2.1. Сухие трансформаторы с открытыми обмотками (ООО «Электрофизика»)
Сухие трансформаторы с открытыми обмотками предназначены для работы в жестких условиях. Опыт их применения на объектах, расположенных в различных климатических зонах, показал высокую надежность и соответствие этого оборудования жестким условиям эксплуатации (табл. 17, 18).
Номенклатура трансформаторов:
1) распределительные общего назначения;
2) преобразовательные для систем:
• возбуждения турбо и гидрогенераторов;
• частотного регулирования электроприводов;
• силового электропитания тяговых подстанций;
3) специальные, в том числе:
• для АЭС;
• морских судов и буровых платформ;
• для питания электрических печей;
• разделительные.
Таблица 17. Технические характеристики трансформаторов
Параметр |
Значение |
Номинальная мощность, кВА |
10—12 500 |
Номинальное напряжение на обмотках, кВ: |
|
ВН |
0,4—35 |
НН |
0,4—10 |
Условия эксплуатации, транспортирования и хранения |
|
температура окружающей среды, °С |
–60÷+40 |
максимальная относительная влажность при +35 °С, %, не более |
98 |
Степерь защиты внутренней и наружной установки, не более |
IP54 |
Гарантийный срок, лет |
3 |
Общий срок службы, лет |
30 |
Эксплуатационные характеристики: нет риска загрязнения окружающей среды, в том числе при утилизации и восстановлении меди трансформаторных обмоток; малообслуживаемые (1—2 раза в год); затраты на обслуживание трансформатора, выполняемое без специального оборудования, минимальны. Трансформаторы с открытыми обмотками не имеют конкурентов среди сухих трансформаторов с литой изоляцией на основе эпоксидной смолы, предназначенных для эксплуатации при температуре окружающей среды до –25 °С.
Таблица 18. Сравнительные характеристики трансформаторов ООО «Электрофизика» с трансформаторами с литой изоляцией из смеси эпоксидной смолы и кварцевой муки
Характеристика трансформатора |
Трансформатор с литой изоляцией |
Трансформатор ООО «Электрофизика» |
Возможность возникновения частичного разряда |
Уровень возникновения частичного разряда 1,2Uном |
Нет |
Электрическая прочность — отношение грозового испытательного импульса к номинальному напряжению, кВ |
30/145 |
10/75 24/180 |
Класс изоляции |
F (155 °C) |
F (155 °С); Н (180 °С) |
Перегрузочная способность для класса изоляции F (155 °С) |
Увеличение нагрузки на 40% требует установки дополнительной вентиляции |
Увеличение нагрузки до 120% не требует дополнительной вентиляции. При увеличении нагрузки на 40% трансформатор работает без дополнительной вентиляции более 1 ч |
Температура окружающей среды, °С |
–25 ÷+40 |
–50 ÷+50 |
Материал обмоток высокого и низкого напряжений |
Алюминий |
Медь |
Подключение обмоток высокого и низкого напряжений |
Непосредственно на выводные концы катушек |
Через опорные изоляторы, выбранные с учетом механических нагрузок, возникающих при КЗ |
Пожароопасность: способность самовозгорания (сравнительная) содержание токсичных добавок в изоляции генерация дыма в случае пожара |
5—10 Да Немного |
1 Нет Нет |
Экологическая рециркуляция материала проводника катушек |
Нет |
Да |
Электрические аппараты тепловоза
Электрические аппараты тепловоза подразделяются на следующее виды: устройства защиты, устройства управления и измерительные приборы. В зависимости от напряжения сети можно выделить низковольтные и высоковольтные устройства.
К наиболее распространенным видам электрических аппаратов тепловоза относят аппараты управления:
- реверсоры;
- контроллеры;
- выключатели;
- контакторы;
- реле.
Контроллеры выполняют функцию настройки мощности дизельного двигателя. Элементы управления данным устройством выполнены в виде двух рукояток: главной и реверсивной.
С контроллера помощью машинист подает ток на тягловые электродвигатели. Движение реверсивного рычага приводит к смене полярности электродвигателя, и, соответственно изменяет направления движения тепловоза.
Выключатели служат для включения и выключения вспомогательных устройств и осветительных приборов.
Контакторы выполняют функцию выключателей, размыкая и замыкая силовые линий.
Реле управления позволяет включать и отключать соответствующие линии управления. Реле перехода позволяет осуществлять переключение силовых электроустановок тепловоза в автоматическом режиме.
Другая группа электрического оборудования для тепловоза – это аппараты автоматического регулирования (регуляторы напряжения и амплистаты).
Регуляторы напряжения обеспечивают постоянное напряжение вспомогательной генераторной установки.
Амплистат выполнен в виде магнитного усилителя. Основная функция данного устройства – регулирование силы тока возбуждения тягового генератора тепловоза.
Защитные электрические аппараты тепловоза – это блокировочный магнит, реле давления масла, реле заземления, реле боксования, реле ограничения тока и температурное реле.
Похожие посты:
- Забор из прутьев, неподвласный времени, Рубрика Ремонт
- Приборы КИПиА: контрольно измерительные приборы и автоматика, Рубрика Монтаж электрики
- Установка газового счётчика в квартире, Рубрика Строительство
- Сгорел счетчик – что делать, Рубрика Учет электроэнергии
- Типы изоляторов воздушных линий электропередачи, Рубрика Линии электропередач
- Подключить электричество на даче, Рубрика Электрика частного дома
- Провод ПВС идеальный вариант для подключения оборудования, Рубрика Материал электрика
Довольно часто происходят поломки электрической бытовой техники, ведь любой электротехнический агрегат при создании рассчитывается на работу с определенным уровнем электроэнергии, т.е. на конкретные показатели силы и напряжения тока в сетях подключения. Поэтому при превышении этих норм может случиться аварийная ситуация.
Последствия перенапряжения в условиях частного домаИспользование дорогостоящей домашней техники, агрессивные природно- атмосферные явления, не слишком высокий уровень прокладки линий электропередач делает жизненно необходимым для собственников квартир и домов принятие мер по защите от перенапряжения электросетей в частном доме и минимизации возможных последствий.
Классификация электрических аппаратов
В большинстве своём работа электрических аппаратных устройств не ограничивается выполнением какой-то одной конкретной функции, а, напротив, связана с реализацией целого набора действий. В связи с этим возникает определенная трудность в разделении таких устройств на конкретные виды и группы.
Для того чтобы провести классификацию электрических аппаратов, важно выделить главные функциональные особенности конкретных типов электрического оборудования:
- Коммутационные устройства. Такое оборудование служит для размыкания и замыкания цепей электрического тока. К таким устройствам относятся различные рубильники, выключатели, разъединители.
- Устройства защиты. Аппараты предохраняют проводящие элементы электрических цепей от перепадов напряжения, повышенной нагрузки сети и замыканий. Представленные функции защиты могут быть реализованы в различных видах предохранителей и реле.
- Аппараты, регулирующие запуск электрических машин. Устройства подобного рода предназначены для обеспечения плавного пуска и остановки промышленных потребителей электрического тока. Аппараты регулируют скорость вращения якоря двигателя. К подобным устройствам можно отнести пускатели, реостаты, контакторы.
- Ограничивающие аппараты. Подобные устройства называют реакторами и разрядниками, они обладают функцией ограничения токов короткого замыкания и перенапряжения.
- Аппараты, обеспечивающие контроль различных параметров электрических цепей. Самые распространенные виды таких устройств – датчики и реле.
- Аппараты, позволяющие проводить корректировку и изменение различных параметров электрического оборудования. К таким аппаратам относятся регуляторы и стабилизаторы.
- Измерительные аппараты. Функция данного оборудования сводится к тому, чтобы обеспечить изоляцию линии первичной коммутации от цепей измерительных приборов и приборов защиты.
- Устройства для проведения работ механического характера. Основным элементом таких устройств является электромагнит, призванный выполнять конкретные функции: подъемный электромагнит, электромагнитный тормоз.
Каждое электрическое устройство имеет в своем составе три основных элемента:
- воспринимающий;
- преобразующий;
- исполнительный элемент.
Если исходить из принципа действия воспринимающего элемента устройства, то электрические аппараты подразделяются на электромагнитные, индукционные, полупроводниковые, магнитные.
В зависимости от принципа действия исполнительного элемента, электрические устройства подразделяются на контактные и бесконтактные аппараты.
Существует еще ряд принципиальных различий, связанных с особенностями эксплуатации рассматриваемого оборудования, которые позволяют провести разделение электрических устройств на определенные группы. Электрические аппараты могут быть рассчитаны на высокое или низкое напряжение. По продолжительности работы, такие устройства могут работать в режиме кратковременной или продолжительной эксплуатации.
Если принимать во внимание принцип управления, то можно выделить два основных вида устройств: с автоматическим и ручным управлением
Оптический канал
Особенности конструкции изделий может неплохо показать используемая система обозначений фотоэлектронных и оптоэлектронных приборов. В том числе это касается и канала передачи данных. Выделяют три основных их варианта:
- Удлиненный канал. Фотоприемник в такой модели отдален на достаточно серьезное расстояние от оптического канала, образуя специальный световод. Именно такой вариант конструкции активно применяется в компьютерных сетях для активной передачи данных.
- Закрытый канал. Такой тип конструкции использует специальную защиту. Она превосходно предохраняет канал от внешнего воздействия. Применяются модели для системы гальванической развязки. Это достаточно новая и перспективная технология, сейчас непрерывно совершенствующаяся и постепенно заменяющая собой электромагнитные реле.
- Открытый канал. Такая конструкция подразумевает наличие воздушного зазора между фотоприемником и излучателем. Используются модели в системах диагностики или разнообразных датчиках.
Конструкция и принцип работы
Обязательными элементами практически любого устройства преобразования напряжения являются изолированные обмотки, формированные из проволоки или ленты. Они располагаются на магнитопроводе, представленном сердечником из ферромагнитного материала. Связь между катушками осуществляется при помощи магнитного потока. В случае работы с высокочастотными токами (100 и более кГц) сердечник отсутствует.
Принцип работы трансформатора
В принципе работы трансформатора сочетаются основные постулаты электромагнетизма и электромагнитной индукции. Его можно рассмотреть на примере простейшего прибора с двумя катушками и стальным сердечником. Подача переменного напряжения на первичную обмотку приводит к возникновение магнитного потока в магнитопроводе, после чего во вторичной и первичной обмотке возникает ЭДС индукции, если подключить нагрузку ко вторичной обмотке то потечёт ток. Частота напряжения на выходе остаётся неизменной, а его величина зависит от соотношения витков катушек.
Трансформаторы бывают повышающие и понижающие, что бы это определить нужно узнать коэффициент трансформации, с его помощью можно узнать какой трансформатор. Если коэффициент меньше 1 то трансформатор повышающий(также это можно определить по значениям если во вторичной обмотке больше чем в первичной то такой повышающий) и наоборот если К>1, то понижающий(если в первичной обмотке меньше витков чем во вторичной).
Формула по вычислению коэффициента трансформации
где:
- U1 и U2 – напряжение в первичной и вторичной обмотки,
- N1 и N2 – количество витков в первичной и вторичной обмотке,
- I1 и I2 – ток в первичной и вторичной обмотки.
Конструкция силового трансформатора:
ТСМ расшифровка
Эти электромагнитные устройства предназначены для трёхфазных цепей и сделаны без дополнительного охлаждения, то есть сухими. Мощность их колеблется от 0,16 до 1 кВА, чаще всего применяются для выпрямителей и полупроводниковых блоков питания. Одним из преимуществ такого устройства является то, что он может располагаться в корпусе в любом положении, горизонтальном или вертикальном.
Советуем изучить Металлоискатель с дискриминацией металлов
Расшифровка его маркировки такая:
После чего указывается его мощность и дополнительные условия климатического применения.
В промышленности и в быту применяется множество сухих и масляных трансформаторов различного назначения. Если есть на них табличка заводского исполнения, то расшифровать его не составляет труда. Главное применять в соответствии с типом электроустановки, мощностью, а также чтобы напряжения и токи всех обмоток были использованы в нормальных условиях без перегрузок. Тогда эти непривередливые, надёжные и неприхотливые в обслуживании устройства могут прослужить десятки лет.
Ключевые характеристики, влияющие на качество работы трансформатора
Помимо внешней характеристики, где напряжение с низкой стороны трансформатора зависит от нагрузки потребителей, существует ряд других факторов, влияющих на качество работы.
Для распределительных силовых трансформаторов по ГОСТ 4.316-85 определены следующие показатели качества:
- Удельная масса по отношению к номинальной мощности кг/кВ*А (показатель считается основным для выбора конструкции тр-ра)
- Установленный эксплуатационный период (показатель определяет надежность и долговечность)
- Потери холостого хода (ХХ) ΔPк, кВт.
- Потери короткого замыкания (КЗ)ΔPк, кВт
- Ток холостого хода Iхх
Качественная зависимость эффективности трансформатора от удельной массы
По приведенным в Таблице 2 значениям видно, лучшие показатели по массе у трансформаторов ТМГ21, где вторичная обмотка исполнена из алюминиевой фольги. Кроме трансформатора ТМ удельный вес остальных моделей уменьшается при увеличении номинальной мощности.
Таблица 2 — Показатели массы силовых трансформаторов ТМ и ТМГ напряжением 10/0,4кВ
Тип трансформатора |
Масса, кг, при Sном, кВА |
Удельная масса, кг/кВА при Sном. кВА |
||||
630кВА |
1000кВА |
1600кВА |
630кВА |
1000кВА |
1600кВА |
|
ТМГ |
1950 |
2890 |
— |
2,9 |
— |
2,9 |
ТМГ11 |
1860 |
2890 |
4250 |
2,8 |
2,7 |
2,8 |
ТМГ12 |
1870 |
2820 |
— |
2,8 |
— |
2,8 |
ТМГ15 |
1870 |
2820 |
— |
2,8 |
— |
2,8 |
ТМГ21 |
1700 |
2550 |
3860 |
2,6 |
2,4 |
2,6 |
ТМЗ |
2650 |
3600 |
4930 |
3,6 |
3,1 |
3,6 |
ТМ |
2030 |
2609 |
4520 |
2,6 |
2,8 |
2,6 |
Потери холостого хода
В режиме холостого хода магнитные потери стали и обмотки высокого напряжения из-за тока ХХ составляют около 1% от ΔPхх
Основные причины больших потерь ХХ:
- Коррозия металла, при нарушении лаковой изоляции.
- Износ изоляции шпилек для стяжки, вызывающих замкнутый накоротко контур.
- Плохая шихтовка.
- Перегрев стальных элементов, болтовых соединений трансформатора.
- Нестабильные характеристики стали.
- Брак при сборке трансформатора.
- Недогрузка трансформатора.
Магнитные потери появляются из-за гистерезиса вихревых токов. Гистерезис вызывает 25% всех магнитных потерь. Вихревые токи – 75% потерь ХХ
Детальное рассмотрение потерь ХХ в Таблице 3.
Таблица 3 — Потери ХХ и КЗ силовых трансформаторов ТМ и ТМГ напряжением 10/0,4 кВ
Тип трансформатора |
Значение ΔPхх, кВт при Sном. кВ*А |
Значение ΔPкз,при Sном. кВА |
||||
630 |
1000 |
1600 |
630 |
1000 |
1600 |
|
ТМГ |
1,05 |
1,55 |
— |
7,6 |
10,2 |
— |
ТМГ11 |
1,1 |
1,4 |
2,15 |
8,7 |
10,2 |
— |
ТМГ12 |
0,8 |
1,1 |
— |
6,75 |
10,5 |
— |
ТМГ15 |
0,73 |
0,94 |
— |
6,75 |
10,5 |
— |
ТМГ21 |
1,03 |
1,3 |
2,05 |
7,45 |
11,6 |
16,75 |
ТМЗ |
1,25 |
1,9 |
2,65 |
7,9 |
12,2 |
16,5 |
ТМ |
1,25 |
1,9 |
2,35 |
7,6 |
11,6 |
16,5 |
Потери токов КЗ
Потери КЗ зависят от следующих факторов:
- Ток нагрузки в обеих обмотках трансформатора.
- Материал обмоток.
- Сечения проводников.
Для комплектных подстанций, где по большей части устанавливают трансформаторы ТМГ, важен показатель суммарных потерь трансформатора, который складывается из потерь на ХХ и КЗ.
Энергоэффективность трансформаторов оценивается по европейскому стандарту HD428. По нему степень потерь мощности КЗ и ХХ не должна превышать стандартные значения.
Таблица 4 — Допустимый уровень потерь в трансформаторах.
Sном, кВА |
Допустимые уровни потерь холостого хода, кВт |
Допустимые уровни потерь короткого замыкания, кВт |
||||
ΔPxa |
ΔPxb |
ΔPxc |
ΔPka |
ΔPkb |
ΔPkc |
|
630 |
1,3 |
1,03 |
0,86 |
6,5 |
8,4 |
5,4 |
1000 |
1,7 |
1,4 |
1,1 |
10,5 |
13,0 |
9,5 |
1600 |
2,6 |
2,2 |
1,7 |
17,0 |
20,0 |
14,0 |
Вывод.
При выборе руководствуются стандартными качественными показателями, регламентированными ГОСТ 4 316-85
Энергоэффективность оценивается в зависимости от минимального количества потерь и наибольшего КПД. Наиболее лучшими и отвечающими качественным показателям являются трансформаторы: энергосберегающий ТМГ12; ТМГ15 и ТМГ21, трансформаторы мощностью 1600кВА типа ТМ и ТМГ11.
Как правильно использовать трансформатор ТМГ: основные рекомендации
- Проводить профилактические осмотры трансформаторов ТМГ надо в соответствии с требования техники безопасности, использую защитную рабочую одежду, маску, диэлектрические перчатки.
- Не запускать агрегат, если известно о его повреждениях, визуально можно рассмотреть пробоины, потертости, вмятины на корпусе. Перед запуском обязательно проверяется работоспособность оборудования.
Важно помнить! Объем масла проверяется обязательно перед запуском. Стоит исключить утечку масла, а потом уже включить «Пуск»
Устанавливается трансформатор ТМГ в подготовленные сухие помещения с допустимым температурно-влажностным режимом. Рекомендуемый тип монтажа – напольный.
Таким образом, ТМГ — трехфазные масляные герметичные трансформаторы сертифицируются изготовителем и используются по назначению. Расшифровка данных по каждой модели трансформаторов ТМГ очень простая и понятная даже новичкам в энергетической сфере. Масло используется для системы охлаждения и бесперебойной работы агрегата. Контроль объемов технических материалов обязателен, иначе вся энергосистема может выйти из строя, оставив потребителей без нужного силового импульса.
Трансформаторы силовые трехфазные, двухобмоточные, герметичные распределительные серии ТМГ
Мощность от 16 до 2500 кВА, класс напряжения до 20 кВ общего назначения с естественным масляным охлаждением с переключением ответвлений без возбуждения (ПБВ), включаемые в сеть переменного тока частотой 50 Гц. Предназначены для преобразования переменного тока и служат для передачи и распределения электрической энергии в энергетических установках.
Трансформаторы ТМГ предназначены для работы в следующих условиях:
- высота установки над уровнем моря не более 1000 м;
- температура окружающего воздуха от минус 45 °С до плюс 40 °С – для трансформаторов исполнения «У»; от минус 60 °С до плюс 40 °С – для трансформаторов исполнения «УХЛ».
- Категория размещения трансформаторов – 1.
Трансформаторы масляные герметичные ТМГ допускают эксплуатацию в условиях категорий размещения 2, 3, 4.
Трансформаторы серии ТМГ не предназначены для работы в условиях тряски, вибрации, ударов, во взрывоопасной и химически активной среде.
Регулирование напряжения осуществляется на полностью отключенном трансформаторе переключателем без возбуждения (ПБВ), позволяющим регулировать напряжение ступенями по 2,5% в диапазоне до ±5%.
Трансформаторы ТМГ герметичного исполнения, не имеют расширителей. Гофрированные баки трансформаторов безопасны и имеют высокую надежность. Температурные изменения объема масла компенсируются изменением объема гофров бака за счет их упругой деформации.
Трансформаторы ТМГ комплектуются маслоуказателями поплавкового типа и предохранительными клапанами пружинного типа, настроенными на срабатывание при избыточном давлении 40 кПА.
По заказу потребителя в трансформаторах мощностью 100 кВА и выше, размещаемых в помещении, возможна установка электроконтактного мановакуумметра.
Для измерения температуры верхних слоев масла трансформаторы ТМГ комплектуются жидкостными термометрами типа ТТЖ-М 240/66 150С ТУ25-2022.0006.90.
Трансформаторы мощностью от 1000 до 2500 кВА, предназначенные для эксплуатации в помещении или под навесом, по заказу потребителя комплектуются манометрическим сигнализирующим термометром типа ТКП.
В нижней части бака имеется пластина заземления и сливная пробка. Конструкция пробки позволяет, при частичном отворачивании ее, производить отбор пробы масла.
Советуем изучить Требования пожарной безопасности к электроустановкам
Трансформатор ТМГ снабжается прикрепленной на видное место табличкой с основными техническими данными.
Трансформаторы мощностью от 400 кВА и выше поставляются с транспортными роликами, позволяющими осуществлять продольное или поперечное перемещение трансформатора. По специальному заказу потребителя завод может доукомплектовать транспортными роликами трансформаторы мощностью от 63 кВА.
Принцип работы
Силовые установки ТМГ являются незаменимыми и надёжными устройствами. Принцип работы агрегатов заключается в приведении величины напряжения к приемлемому показателю в процессе индукции электромагнитного поля переменного тока (выравнивание), не допуская скачков и нестабильности. Это осуществляется благодаря его конструкции и техническим характеристикам.
Принцип работы трансформатора
Трансформатор является статическим устройством, преобразующим ток и напряжение путём взаимоиндукции. Слоевые обмотки первичного и вторичного напряжения изначально размещают на остове из электротехнической стали. При размыкании вторичной обмотки, первичная получает напряжение и создаёт магнитное поле с потоком, который замыкается по сердечнику. Магнитный поток сцепляется с витками обмоток, благодаря чему электродвижущая сила приводится в норму, и показатели напряжения в сети составляют 220 В.
При этом рекомендуемое соединение обмоток – звезда. Потери холостого хода составляют 15 %, а величина номинального напряжения достигает 0,4-0,35 кВ. Во время работы агрегат охлаждается маслом, расположенным в герметичном баке, температура которого регулируется автоматически, не допуская перегрева.
Техническое обслуживание и ремонт ТМГ
Перед тем, как залить и долить масло в устройство, рекомендуется проверить факт, что ранее оно не использовалось. На каждую партию масла, которое заливается и доливается в устройство, необходимо наличие сертификатов качества от поставщика, удостоверяющих соответствие масла установленным стандартам и техническим условиям. Сведения о соответствии масла, которое поступает с трансформатором, вносятся в паспорт, либо трансформаторный формуляр
Важно отметить, что допускается доливать в аппарат масло только с величиной пробивного напряжения до 35 кВ. Доливка осуществляется по необходимости
Интересное видео: Производство трансформаторов ТМГ
https://youtube.com/watch?v=fYUtgW0j2S0
Текущий ремонт трансформаторов выполняется в сроки, установленные руководящим документом «Правила технической эксплуатации электрических станций и сетей». После окончания текущих ремонтов оборудования проводятся испытания.
Из приведённого описания видно, что ТМГ неприхотлив в использовании и требует минимальных затрат при обслуживании. Помимо этого, трансформаторное устройство обладает рядом преимуществ, среди которых значение коэффициента полезного действия до 99%, отличные эксплуатационные качества, а также защита от перегрева и коротких замыканий.
Маркировка трансформаторов
Любой трансформатор отличается различными конструктивными особенностями, областью применения, номинальным напряжением и климатическими условиями и т.п. Нужно уметь правильно расшифровать маркировку буквенно — цифровые обозначения характеристик трансформаторов: его мощность, систему охлаждения, количество обмоток, напряжение на обмотках высшего напряжения и низшего напряжения.
Любая цифра или буква на табличке набитой на корпусе трансформатора имеет свое значение. Некоторые буквы могут отсутствовать, другие не могут быть одновременно, например «О» и «Т» однофазный и трехфазный.
Самые частые обозначения трансформаторов буквенные: ТМ, ТС, ТСЗ, ТД, ТДЦ, ТМН, ТДН, ТЦ, ТДГ, ТДЦГ, ОЦ, ОДГ, ОДЦГ, АТДЦТНГ, АОТДЦН и т. д
- А – обозначает автотрансформатор
- Первая буква отмечает фазировку: Т — трехфазный, О – однофазный;
- Буква Р (с расщепленной обмоткой) после числа фаз в обозначении указывает, что обмотка низшего напряжения представлена двумя (тремя) обмотками.
- Вторая буква указывает на систему охлаждения: М — естественное масляное, т. е. естественная циркуляция масла, С — сухой трансформатор с естественным воздушным охлаждением открытого исполнения, Д — масляное с дутьем, т. е. с обдуванием бака при помощи вентилятора, Ц — принудительная циркуляция масла через водяной охладитель, ДЦ — принудительная циркуляция масла с дутьем.
- Наличие второй буквы Т означает, что трансформатор трехобмоточный, двухобмоточный специального обозначения не имеет.
- Н — регулирование напряжения под нагрузкой (РПН), отсутствие — наличие переключения без возбуждения (ПБВ),
- Г — грозоупорный.
- За буквенными обозначениями следуют (Uн) номинальная мощность трансформатора (кВА)
- через дробь — класс номинального напряжения обмотки ВН (кВ). В автотрансформаторах добавляют в виде дроби класс напряжения обмотки СН. Иногда указывают год начала выпуска трансформаторов данной конструкции.
Шкала номинальных мощностей трехфазных силовых трансформаторов и автотрансформаторов (действующие государственные стандарты 1967 — 1974 гг.) высоковольтных сетей выстроена так, чтобы были значения мощности, кратные десяти: 20, 25, 40, 63, 100, 160, 250, 400, 630, 1000, 1600 кВА и т. д. Отдельные исключение составляют мощности 32000, 80000, 125000, 200000, 500000 кВА
Срок службы трансформаторов довольно длительные и равен 50 лет. В наше время можно встретить трансформаторы промышленных производств изготовленные еще 1968г, прошедшие капитальный ремонт.
Шкала мощностей трансформаторов выпущенных в СССР: 5, 10, 20, 30, 50, 100, 180, 320, 560, 750, 1000, 1800, 3200, 5600, …, 31500, 40500, кВА и т. д.
Чтобы не запутаться в табличке указанных данных, можно разбить ее шесть групп. Пример определения показателей для трансформатора АОДЦТН — 333000/750/330 автотрансформатор однофазный, масляный с дутьём и принудительной циркуляцией масла, трёхобмоточный, регулируемый под нагрузкой, номинальной мощностью 333 МВА, класс ВН — 750 кВ, класс СН — 500 кВ
Назначение и область применения
ТМГ применяют в различных условиях, но назначение зависит от категории размещения, определяемой параметрами: 2, 3, 4 и высоты установки над уровнем моря, которая не должна быть выше 1000 м.
Агрегаты мощностью от 1000 до 2500 кВА, с манометрическими сигнализирующими термометрами, предназначаются для использования под навесом и в помещениях при температурных показателях от -40 до +60 градусов.
Аппараты нельзя использовать в условиях сильной вибрации, возможных механических ударов, химически активной и взрывоопасной среде. Вблизи легковоспламеняющихся предметов, а также в условиях жаркого климата рекомендуется ставить сухие трансформаторы или устройства с встроенными реле защиты.
Опытные мастера для производственных нужд советуют использовать модели типа СЭЩ, которые выравнивают напряжение и одновременно экономят электроэнергию.
Техническое обслуживание
Под техническим обслуживанием электротехнического оборудования подразумевается комплекс мер, направленных на осуществление постоянного контроля за состоянием ТМГ, поддержание его работоспособности и своевременного выявления дефектов на ранних стадиях. Для этого производятся ежедневные осмотры, производимые оперативным персоналом, текущий ремонт, межремонтные испытания и капитальный ремонт. Объем задач для каждого вида обслуживания определяется как Правилами технической эксплуатации электроустановок потребителей (ПТЭЭП), так и местными инструкциями.
Периодически осуществляется проверка состояния изоляции при помощи мегаомметра. Согласно приложения 3.1. ПТЭЭП измерения выполняются напряжением в 2500 В, а сопротивление электрической изоляции не должно быть менее 500 МОм. Также проверяется тангенс угла диэлектрических потерь, коэффициент трансформации и омическое сопротивление.
При осмотре обращается внимание на состояние радиаторов охлаждения, корпус бака проверяется на наличие подтеков масла. В отличии от сухого трансформатора, по результатам испытаний отбирается масло для анализа
Проверяется работоспособность встроенных защит, включая встроенные специальные трансформаторы для измерений.
ОБОЗНАЧЕНИЕ ВЫВОДОВ ОБМОТОК ТРАНСФОРМАТОРОВ ТОКА И ВЕКТОРНЫЕ ДИАГРАММЫ
Обозначение выводов. При изготовлении трансформаторов тока выводы их первичной и вторичной обмоток условно обозначаются (маркируются) так, чтобы при помощи этих обозначений можно было определять направление вторичного тока по направлению первичного.
Выводы первичной обмотки могут обозначаться произвольно: один из них принимается за начало Н
, а второй — за конец обмоткиК (рис. 3-6, а). Маркировка же выводов вторичной обмотки выполняется по следующему правилу.
При прохождении топа в первичной обмотке от начала Н к концу К за начало вторичной обмотки н принимается тот ее вывод, из которого в этот момент ток вытекает в цепь нагрузки
(рис. 3-6,а). Соответственно второй вывод вторичной обмотки принимается за конец обмоткик .
При обозначении выводов вторичной обмотки по указанному выше правилу ток в обмотке реле, включенного во вторичную цепь трансформатора тока, имеет такое же направление, как и в случае включения реле непосредственно в первичную цепь (рис. 3-6, а).
В СССР принято обозначать начало и конец первичной обмотки трансформаторов Л1
иЛ2, а начало и конец вторичной обмоткиИ1 иИ2 (рис. 3-6,в). Пользуясь указанными обозначениями выводов, производят включение обмоток реле направления мощности, ваттметров и некоторых других приборов и выполняют соединения вторичных обмоток трансформаторов тока в заданные схемы. Обозначение одноименных выводов на схемах показано на рис. 3-6, в.
На рис. 3-6, г показаны направление вторичного тока и маркировка выводов при одинаковом и различном направлениях намотки витков первичной и вторичной обмоток при условии, что первичный ток в обоих случаях направлен от Н к К. Направления потока Ф1 и вторичного тока определяются по правилу буравчика.
Изображение векторов вторичных токов. Направление векторов вторичного тока I2 на диаграмме зависит от положительного направления тока, принятого для вторичной
обмотки. Если положительное направление вторичного и первичного токов принято совпадающим, например направленным от начала к концу (рис. 3-7, а), то при прохождении по первичной обмотке тока положительного направления вторичный ток будет иметь отрицательный знак и изобразится на векторной диаграмме вектором, противоположным вектору первичного тока. Если же принять за положительное направление вторичного тока ток, обратный первичному (рис. 3-7, б), проходящий от конца к началу вторичной обмотки, то знаки первичного тока и соответствующего ему вторичного тока будут одинаковы, а их векторы будут совпадать. Второй способ удобнее первого, так как он позволяет при построении векторных диаграмм вторичные и первичные токи считать совпадающими. Поэтому он принимается в дальнейшем изложении. В рассмотренных построениях погрешность трансформаторов тока не учитывается.
НОВЫЕ УСТРОЙСТВА ДЛЯ ПОЛУЧЕНИЯ ИНФОРМАЦИИ О ПЕРВИЧНОМ ТОКЕ
Рост мощности электростанций и энергосистем приводит к увеличению токов к. з., а увеличение единичных мощностей генераторов вызывает увеличение времени затухания апериодических составляющих тока к. з. Для крупных генераторов постоянная времени приближается к 0,3 с. Одновременно с этим вследствие роста энергосистем и сооружения мощных электропередач сверхвысокого напряжения повышаются требования к быстродействию защит. Появляются измерительные органы защит, действующие в течение первого полупериода к. з., т. е. тогда, когда апериодическая составляющая тока к. з. еще не затухает.