Полезная и затраченная работа
Был такой мифологический персонаж у древних греков — Сизиф. За то, что он обманул богов, те приговорили его после смерти вечно таскать огромный булыжник вверх по горе, откуда этот булыжник скатывался — и так без конца. В общем, Сизиф делал совершенно бесполезное дело с нулевым КПД. Поэтому бесполезную работу и называют «сизифов труд».
Чтобы разобраться в понятиях полезной и затраченной работы, давайте пофантазируем и представим, что Сизифа помиловали и камень больше не скатывается с горы, а КПД перестал быть нулевым.
Полезная работа в этом случае равна потенциальной энергии, приобретенной булыжником. Потенциальная энергия, в свою очередь, прямо пропорциональна высоте: чем выше расположено тело, тем больше его потенциальная энергия. Выходит, чем выше Сизиф прикатил камень, тем больше полезная работа.
Потенциальная энергия
Еп = mgh m — масса тела g — ускорение свободного падения [м/с2] h — высота На планете Земля g ≈ 9,8 м/с2 |
Затраченная работа в нашем примере — это механическая работа Сизифа. Механическая работа зависит от приложенной силы и пути, на протяжении которого эта сила была приложена.
Механическая работа
А = FS A — механическая работа F — приложенная сила S — путь |
И как же достоверно определить, какая работа полезная, а какая затраченная?
Все очень просто! Задаем два вопроса:
- За счет чего происходит процесс?
- Ради какого результата?
В примере выше процесс происходит ради того, чтобы тело поднялось на какую-то высоту, а значит — приобрело потенциальную энергию (для физики это синонимы).
Происходит процесс за счет энергии, затраченной Сизифом — вот и затраченная работа.
Мощность
На заводах по всему миру большинство задач выполняют машины. Например, если нам нужно закрыть крышечками тысячу банок колы, аппарат сделает это в считанные минуты. У человека эта задача заняла бы намного больше времени. Получается, что машина и человек выполняют одинаковую работу за разные промежутки времени. Для того, чтобы описать скорость выполнения работы, нам потребуется понятие мощности.
Мощностью называется физическая величина, равная отношению работы ко времени ее выполнения.
Мощность
N = A/t N — мощность A — механическая работа t — время |
Один ватт — это мощность, при которой работа в один джоуль совершается за одну секунду.
Также для мощности справедлива другая формула:
Мощность
N = Fv N — мощность F — приложенная сила v — скорость [м/с] |
Как и для работы, для мощности справедливо правило знаков: если векторы направлены противоположно, значение мощности будет отрицательным.
Поскольку сила и скорость — векторные величины, в случае наличия между ними угла формула принимает следующий вид:
Мощность
N = Fvcosα N — мощность F — приложенная сила v — скорость [м/с] α — угол между векторами силы и скорости [] |
формула, мгновенный и средний расчет силы.
Термин «мощность» в физике имеет специфический смысл. Механическая работа может выполняться с различной скоростью. А механическая мощность обозначает, как быстро совершается эта работа
Способность правильно измерить мощность имеет важное значение для использования энергетических ресурсов
Физический смысл мощности
Разные виды мощности
Для формулы механической мощности применяется следующее выражение:
N = ΔA/Δt.
В числителе формулы затраченная работа, в знаменателе – временной промежуток ее совершения. Это отношение и называется мощностью.
Существует три величины, которыми можно выразить мощность: мгновенная, средняя и пиковая:
- Мгновенная мощность – мощностной показатель, измеренный в данный момент времени. Если рассмотреть уравнение для мощности N = ΔA/Δt , то мгновенная мощность представляет собой ту, которая берется в чрезвычайно малый промежуток времени Δt. Если имеется построенная графическая зависимость мощности от времени, то мгновенная мощность – это просто считываемое с графика значение в любой взятый момент времени. Другая запись выражения для мгновенной мощности:
N = dA/dt.
Средняя мощность – мощностная величина, измеренная за относительно большой временной отрезок Δt;
Пиковая мощность – максимальное значение, которое мгновенная мощность может иметь в конкретной системе в течение определенного временного промежутка. Стереосистемы и двигатели автомобилей – примеры устройств, способных обеспечить максимальную мощность, намного выше их средней номинальной мощности. Однако поддерживать эту мощностную величину можно в течение короткого времени
Хотя для эксплуатационных характеристик устройств она может быть более важной, чем средняя мощность.
Важно! Дифференциальная форма уравнения N = dA/dt универсальна. Если механическая работа выполняется равномерно в течение времени t, то средняя мощность будет равна мгновенной. Из общего уравнения получается запись:
Из общего уравнения получается запись:
N = A/t,
где A будет общая работа за заданное время t. Тогда при равномерной работе вычисленный показатель равен мгновенной мощности, а при неравномерной –средней.
Формулы для механической мощности
В каких единицах измеряют мощность
Стандартной единицей для измерения мощности служит Ватт (Вт), названный в честь шотландского изобретателя и промышленника Джеймса Ватта. Согласно формуле, Вт = Дж/с.
Существует еще одна единица мощности, до сих пор широко используемая, – лошадиная сила (л. с.).
Интересно. Термин «лошадиная сила» берет свое начало в 17-м веке, когда лошадей использовали для поднятия груза из шахты. Одна л. с. равна мощности для поднятия 75 кг на 1 м за 1 с. Это эквивалентно 735,5 Вт.
Мощность силы
Уравнение для мощности соединяет выполненную работу и время. Поскольку известно, что работа выполняется силами, а силы могут перемещать объекты, можно получить другое выражение для мгновенной мощности:
- Работа, проделанная силой при перемещении:
A = F x S x cos φ.
- Если поставить А в универсальную формулу для N, определяется мощность силы:
N = (F x S x cos φ)/t = F x V x cos φ, так как V = S/t.
- Если сила параллельна скорости частицы, то формула принимает вид:
N = F x V.
Мощность вращающихся объектов
Процессы, связанные с вращением объектов, могут быть описаны аналогичными уравнениями. Эквивалентом силы для вращения является крутящий момент М, эквивалент скорости V – угловая скорость ω.
Если заменить соответствующие величины, то получается формула:
N = M x ω.
M = F x r, где r – радиус вращения.
Для расчета мощности вала, вращающегося против силы, применяется формула:
N = 2π x M x n,
где n – скорость в об/с (n = ω/2π).
Отсюда получается то же упрощенное выражение:
N = M x ω.
Таким образом, двигатель может достичь высокой мощности либо при высокой скорости, либо, обладая большим крутящим моментом. Если угловая скорость ω равна нулю, то мощность тоже равна нулю, независимо от крутящего момента.
Таблица 2. Коэффициенты спроса (по нормативам)
Заявленная мощность, кВт │до 14│ 20 │ 30 │ 40 │ 50 │ 60 │ 70 и более│ |
Коэффициент спроса │ 0,8 │ 0,65 │ 0,6 │ 0,55 │ 0,5 │ 0,48 │ 0,45 │ |
Для того, чтобы самостоятельно рассчитать примерную потребляемую мощность, необходимо выбрать из списка потребителей, которые планируются к использованию и просуммировать их (предварительно умножив каждую позицию на количество потребителей одного типа). Далее необходимо умножить полученную сумму на коэффициент одновременного использования, который зависит от потребляемой мощности (таблица № 2).
Пример: если сумма потребителей у вас получилась 32,8 кВт, то по таблице № 1 коэффициент спроса будет равен 0,6. Умножив 32,8 кВт на 0,6, получим ориентировочное значение потребляемой мощности (на дом) 19,68 кВт.
Полученную оценку потребляемой мощности Вашего дома Вы можете использовать в дальнейшем для корректировки значения приобретаемой мощности, либо своих потребностей, если выделенная мощность меньше полученного значения.
Методы измерения
Мощность можно определить двумя способами: косвенным и прямым. В первом случае это делается при помощи амперметра и вольтметра, а также осциллографа. Измеряются значения напряжения и тока, а затем по формулам вычисляется мощность. Этот способ имеет один недостаток: величина мощности получается с некоторой погрешностью.
При использовании прямого метода используется специальный прибор-измеритель. Он называется ваттметром и показывает мгновенное значение мощности. У каждого из способов есть свои достоинства и недостатки. Какой из методов наиболее оптимален, определяет сам радиолюбитель. Если проектируется какое-либо изделие, которое отличается надежностью, то следует применять прямой метод. В других случаях рекомендуется воспользоваться косвенным методом.
Косвенный способ
Мощность в цепях постоянного и переменного токов определяется различными способами. Для каждого случая существуют свои законы и формулы. Однако мощность можно не рассчитывать, поскольку она указана на электрооборудовании. Расчет применяется только при проектировании устройств.
Для цепей постоянного тока нужно воспользоваться формулой: P = U * I. Ее можно вывести из закона Ома для участка или полной цепи. Если рассматривается полная цепь, то формула принимает другой вид с учетом ЭДС (е): P = e * I. Основные соотношения для расчета:
- Для участка электрической цепи: P = I * I * R = U * U / R.
- Для полной цепи, в которой подключен электродвигатель или выполняется зарядка аккумулятора (потребление): P = I * e = I * e — sqr (I) * Rвн = I * (e — (I * Rвн)).
- В цепи присутствует генератор или гальванический элемент (отдача): P = I * (e + (I * Rвн)).
Эти соотношения невозможно применять для цепей переменного тока, поскольку он подчиняется другим физическим законам. При измерении мощности в цепях переменного тока следует учитывать ее составляющие (активная, реактивная и полная). Если в цепи присутствует только резистор, то мощность считается активной. При наличии емкости или индуктивности — реактивной. Полная — сумма активной и реактивной составляющих.
Для вычисления первого типа физической величины применяется формула такого вида: Ра = I * U * cos (a). Значения тока и напряжения являются среднеквадратичными, а cos (a) — косинус угла между ними. Для определения реактивной мощности нужно воспользоваться следующей формулой: Qр = I * U * sin (a). Если нагрузка в цепи является индуктивной, то значение будет больше 0. В противном случае — меньше 0. Полная мощность Р определяется по следующему соотношению: P = Pa + Qp.
Расчет потребляемой мощности
Электромощность является величиной, которая отвечает за факт скорости изменения или передачи электрической энергии. Есть полная и активная мощностная нагрузка, а также активная и реактивная. Полная вычисляется так: S = √ (P2 + Q2), где P является активной частью, а Q реактивной. Для нахождения потребляемого мощностного показателя необходимо знать число электротока, которое потребляется нагрузкой, а также питательное напряжение, которое выдается при помощи источника.
Что касается бытового определения потребляемой электрической энергии, необходимо вычислить общее количество ватт питания электрических приборов и паспортные данные номинальной силы электротока котла. Как правило, все электрические приборы работают с переменным током и напряжением в 220 вольт. Для вычисления тока проще всего воспользоваться амперметром. Зная первый и второй параметры, реально узнать величину потребляемой энергии.
Стоит указать, что измерить мощность через напряжение или сделать расчет мощности по сопротивлению и напряжению возможно не только формулой, но и прибором. Для этого можно воспользоваться мультиметром с токоизмерительными клещами или специализированным измерителем — ваттметром.
Обратите внимание! Оба работают по одному и тому же принципу, указанному в руководстве по их эксплуатации. Мощность, ток и напряжение — три составляющие расчета проводки в доме. Узнать все необходимые параметры в любой сети просто при помощи формул, представленных выше
От этих значений будет зависеть исправность работы всей домашней электрики и безопасность ее владельца
Узнать все необходимые параметры в любой сети просто при помощи формул, представленных выше. От этих значений будет зависеть исправность работы всей домашней электрики и безопасность ее владельца
Мощность, ток и напряжение — три составляющие расчета проводки в доме. Узнать все необходимые параметры в любой сети просто при помощи формул, представленных выше. От этих значений будет зависеть исправность работы всей домашней электрики и безопасность ее владельца.
Источник
Формула для определения мощности
Первое, на что надо обратить внимание, – это паспортные данные приборов. Потребляемая мощность в ваттах может быть указана и на различных табличках, прикрепленных к устройствам
Часто показатель мощности указывается в вольтамперах (В*А). Обычно это происходит, когда потребляемая прибором энергия имеет реактивную составляющую. Тогда обозначается полная мощность электрического устройства, а она измеряется в вольтамперах.
Потребляемая мощность, указанная на электроприборе
Но не всегда эта информация доступна. Тогда на помощь приходят простая формула и измерительные приборы.
Основная формула, с помощью которой ведется расчет потребляемой мощности:
P = I * U, то есть надо перемножить напряжение и ток.
Если в паспортных данных электроприбора нет мощности, но указан ток, то ее можно узнать по этой формуле. Допустим, устройство берет ток 1 А и работает от сети 220 В. Тогда P = U * I = 1 * 220 = 220 Вт.
От чего зависит величина КПД
Эта величина зависит от того, насколько общая совершенная работа может переходить в полезную. Прежде всего, это зависит от самого устройства механизма или машины. Инженеры всего мира бьются над тем, чтобы повышать КПД машин. Например, для электромобилей коэффициент очень высок – больше 90%.
А вот двигатель внутреннего сгорания, в силу своего устройства, не может иметь η, близкий к 100 процентам. Ведь энергия топлива не действует непосредственно на вращающиеся колеса. Энергия рассеивается на каждом передаточном звене. Слишком много передаточных звеньев, и часть выхлопных газов все равно выходит в выхлопную трубу.
ИНФОФИЗ — мой мир…
Механическая работа и мощность. Единицы измерения работы и мощности.
Краткий ответ
Механическая работа –это скалярная величина, равная произведению модуля силы, действующей на тело, на модуль перемещения и на косинус угла между вектором силы и вектором перемещения (или скорости). A = Fs cos α
Обозначения:
A — Механическая работа
F — Сила, действующая на тело
S — Перемещение, которое тело совершает под действием силы
a — Угол между направлением действия силы и вектором перемещения
Работа является скалярной величиной. Она может быть как положительна (0° ≤ α <� 90°), так и отрицательна (90° <� α ≤ 180°). При α = 90° работа, совершаемая силой, равна нулю.
В системе СИ работа измеряется в джоулях (Дж)
Работа силы, совершаемая в единицу времени, называется мощностью
Мощность N
–физическая величина, равная отношению работы A к промежутку времени t, в течение которого совершена эта работа :
N=A/t
В Международной системе (СИ) единица мощности называется ватт (Вт)
Внесистемная единица мощности 1 л.с.=735 Вт
Развернутый ответ
Энергетические характеристики движения вводятся на основе понятия механической работы или работы силы.
Если на тело действует сила и тело под действием этой силы перемещается, то говорят, что сила совершает работу.
Механическая работа –это скалярная величина, равная произведению модуля силы, действующей на тело, на модуль перемещения и на косинус угла между вектором силы и вектором перемещения (или скорости). A = Fs cos α
Обозначения:
A — Механическая работа
F — Сила, действующая на тело
S — Перемещение, которое тело совершает под действием силы
a — Угол между направлением действия силы и вектором перемещения
В системе СИ работа измеряется в джоулях (Дж)
. Джоуль равен работе, совершаемой силой в 1 Н на перемещении 1 м в направлении действия силы.
Работа является скалярной величиной. Она может быть как положительна (0° ≤ α <� 90°), так и отрицательна (90° <� α ≤ 180°). При α = 90° работа, совершаемая силой, равна нулю.
1) Если направление силы совпадает с направлением движения тела, т.е.α = 0, cos α = 1 то
A=F·S
2) Если сила направлена перпендикулярно к направлению движения тела, т.е. α = 90º, cos α = 0 то
A = 0
Следовательно, если тело перемещается в направлении, перпендикулярном к направлению действия силы, то сила не производитработы. 3) Если угол между направлением силы и направлением движения тупой, т.е. α > 90º, cos α < 0 то
A=-F·S·cosa
4) Если перемещение происходит в сторону, противоположную направлению вектора силы, т.е. α = 180 º, cos α = -1 то
A=-F·S
Например, работа силы сопротивления отрицательна.
Графически работа определяется по площади криволинейной фигуры под графиком Fs
(x )
Работа силы, совершаемая в единицу времени, называется мощностью
Мощность N
–физическая величина, равная отношению работы A к промежутку времени t, в течение которого совершена эта работа :
N=A/t
В Международной системе (СИ) единица мощности называется ватт (Вт)
. Ватт равен мощности силы, совершающей работу в 1 Дж за время 1 с.
Внесистемная единица мощности 1 л.с.=735 Вт
Связь между мощностью и скоростью при равномерном движении
N=A/t так как A=FScosα тогда N=(FScosα)/t, но S/t = v следовательно
N=Fvcosα В технике используются единицы работы и мощности:
1 Вт·с = 1 Дж; 1Вт·ч = 3,6·103 Дж; 1кВт·ч = 3,6·106 Дж
Как правильно рассчитать
Активная мощность, как сделать правильный расчет?
Мощность электрического тока влияет на то, как быстро прибор сможет выполнить работу. К примеру, дорогой обогреватель, имеющий в 2 раза большую мощность, обогреет помещение быстрее, чем два дешевых, с меньшей в 2 раза мощностью. Получается, что выгоднее купить агрегат, имеющий большую мощность, чтобы быстрее обогреть холодное помещение. Но, в то же время, такой агрегат будет тратить существенно больше энергии, чем его более дешевый аналог.
Потребляемая мощность всех приборов в доме учитывается и при подборе проводки для прокладки в доме. Если не учитывать этого и в последующем включить в сеть слишком много приборов, то это вызовет перегрузку сети. Проводка не сможет выдержать мощность электрического тока всех приборов, что приведет к плавлению изоляции, замыканию и самовоспламенению проводки. В результате может начаться пожар, который может привести к непоправимым последствиям.
Вам это будет интересно Для чего нужно выравнивание потенциалов
Однофазный синусоидальный ток в электрических цепях вычисляется по формуле Р = U x I x cos φ, где υ и Ι. Их обозначение шифруется следующим образом: среднеквадратичное значение напряжение и тока, а φ — фазный угол фаз между ними.
Для цепей несинусоидального тока электрическая ёмкость равна корню квадратному из суммы квадратов активной и реактивной производительности. Активная производительность характеризуется скоростью, которая имеет необратимый процесс преобразования электрической энергии в другие виды энергии. Данная ёмкость может вычисляться через силу тока, напряжение и активную составляющую сопротивления цепи r или её проводимость g по формуле P = I(2) x r = U(2) x g.
Реактивная мощность (Reactive Power)
Следует заметить, что:
- резистор потребляет активную мощность и отдаёт её в форме тепла и света.
- индуктивность потребляет реактивную мощность и отдаёт её в форме магнитного поля.
- конденсатор потребляет реактивную мощность и отдаёт её в форме электрического поля.
В любой электрической цепи как синусоидального, так и несинусоидального тока активная способность всей цепи равна сумме активных мощностей отдельных частей цепи, для трёхфазных цепей электрическая емкость определяется как сумма пропускной способности отдельных фаз. С полной производительностью S, активная связана соотношением P = S x cos φ.
В теории длинных линий (анализ электромагнитных процессов в линии передачи, длина которой сравнима с длиной электромагнитной волны) полным аналогом активной мощности является проходящая мощность, которая определяется как разность между падающей мощностью и отраженной производительностью.
Как найти реактивную полную мощность через активную? Данная производительность, характеризующая нагрузки, создаваемые в электротехнических устройствах колебаниями энергии электромагнитного поля в цепи синусоидального переменного тока, равна произведению среднеквадратичных значений напряжения U и тока I, умноженному на синус угла сдвига фаз φ между ними: Q = U x I x sin φ (если ток отстаёт от напряжения, сдвиг фаз считается положительным, если опережает — отрицательным).
Обозначение реактивной величины
Измерение мощности приборами
В чем измеряется мощность
Если это обычный бытовой прибор, подключаемый в розетку, то питающее напряжение электрической сети известно – 220 В. При подсоединении к другим источникам питания берется их напряжение.
Сила тока может быть измерена:
- токоизмерительными клещами;
- используя тестер.
С помощью токоизмерительных клещей замеры проще, так как осуществляются бесконтактным способом на одном проводе, подходящем к нагрузке.
Существует два метода, как измерить мощность мультиметром:
- Включить его в режиме измерения силы тока последовательно с электроприбором и затем рассчитать мощность по формуле. Этот способ не всегда подходит, так как может не быть возможности разорвать цепь питания устройства для подключения мультиметра;
- Подсоединить мультиметр к устройству в режиме измерения сопротивления и затем определить ток по формуле I = U/R, зная напряжение. Затем посчитать мощность.
Измерение сопротивления ТЭНа мультиметром
Важно! Если измеряется сила тока бытовых электроприборов, то тестер устанавливается на измерение переменного тока
Измеритель мощности
Проблема точного расчета энергопотребления телевизора или дисплея компьютера сводится к качеству сборки экрана, энергосберегающим функциям и к шаблонам использования оборудования конкретным пользователем. Хороший способ точно узнать потребление конкретного электроприбора – использовать специальный ваттметр для измерений мощности бытовых устройств.
Бытовой ваттметр
Этот измерительный прибор является недорогим, но безопасным и эффективным средством определить потребляемую мощность. Ваттметр подключается непосредственно в розетку, а затем в его розеточный вход включается электроприбор.
Взаимосвязь полезной мощности и КПД
Коэффициент полезного действия (КПД) – величина безразмерная, численно выражается в процентах. КПД обозначают буквой η.
кВа в кВт — как правильно перевести мощность
Формула имеет вид:
η = А/Q,
где:
- А – полезная работа (энергия);
- Q – затраченная энергия.
По мере увеличения КПД в различных двигателях допустимо выстроить следующую линейку:
- электродвигатель – до 98%;
- ДВС – до 40%;
- паровая турбина – до 30%.
Что касается мощности, КПД равен отношению полезной мощности к полной мощности, которую выдает источник. В любом случае η ≤ 1.
Важно! КПД и Pпол не одно и то же. В разных рабочих процессах добиваются максимума или одного, или другого
Получение максимальной энергии на выходе ИП
К сведению. Чтобы увеличить КПД подъёмных кранов, нагнетательных насосов или двигателей самолётов, нужно уменьшить силы трения механизмов или сопротивления воздуха. Этого достигают применением разнообразных смазок, установкой подшипников повышенного класса (заменив скольжение качением), изменением геометрии крыла и т.д.
Максимальная энергия или мощность на выходе ИП может быть достигнута при согласовании сопротивления нагрузки Rн и внутреннего сопротивления R0 ИП. Это значит, что Rн = R0. В этом случае КПД равен 50%. Это вполне приемлемо для малоточных цепей и радиотехнических устройств.
Однако этот вариант не подходит для электрических установок. Чтобы впустую не тратились большие мощности, режим эксплуатации генераторов, выпрямителей, трансформировав и электродвигателей таков, что к.п.д. приближается к 95% и выше.
График зависимости Рпол и η от тока в цепи
Достижение максимального КПД
Формула КПД источника тока имеет вид:
η = Pн/Pобщ = R/Rн+r,
где:
- Pн – мощность нагрузки;
- Pобщ – общая мощность;
- R – полное сопротивление цепи;
- Rн – сопротивление нагрузки;
- r – внутреннее сопротивление ИТ.
Как видно из графика, изображённого на рис. выше, мощность Pн с уменьшением тока в цепи стремится к нулю. КПД, в свою очередь, достигнет максимального значения, когда цепь будет разомкнута, и ток равен нулю, при коротком замыкании в цепи станет равным нулю.
Если обратиться к элементарному тепловому двигателю, состоящему из поршня и цилиндра, то у него степень сжатия равна степени расширения. Повышение КПД такого мотора возможно в случае:
- изначально высоких параметров: давления и температуры рабочего тела перед началом расширения;
- приближения их значений к параметрам окружающей среды по окончании расширения.
Достижение ηmax доступно лишь при наиболее эффективном изменении давления рабочего компонента во вращательное движение вала.
К сведению. Термический коэффициент полезного действия повышается с повышением доли теплоты, подаваемой к рабочему телу, которая преобразуется в работу. Подаваемая теплота делится на два вида энергии: внутренняя в виде температуры и энергия давления.
Механическую работу, по сути, совершает только второй вид энергии. Это порождает целый ряд минусов тормозящих процесс повышения КПД:
- некоторая часть давления уходит на внешнюю среду;
- достижение максимального коэффициента полезного действия невозможно без увеличения процента использования энергии давления для преобразования в работу;
- нельзя поднять КПД тепловых двигателей, не изменяя S поверхности приложения давления, и без удаления этой поверхности от точки вращения;
- использование только газообразного рабочего тела не способствует повышению η тепловых двигателей.
Для достижения высокого коэффициента полезного действия теплового двигателя нужно определяться с рядом решений. Этому способствуют следующие модели устройства:
- ввести в цикл расширения ещё одно рабочее тело с другими физическими свойствами;
- наиболее полно перед расширением использовать оба вида энергии рабочего тела;
- осуществлять генерацию добавочного рабочего тела прямо при расширении газообразного.
Информация. Все доработки двигателей внутреннего сгорания в виде: нагнетателя турбонадува, организации многократного или распределённого впрыска, а также повышения влажности воздуха, доведения топлива при впрыске до состояния пара, не дали ощутимых результатов резкого повышения КПД.
КПД двигателя внутреннего сгорания
По какой формуле вычисляется
Формула механической мощности — средняя и мгновенная мощность
В следующих пунктах рассмотрены подробно типичные ситуации (подключаемые устройства):
- источник постоянного напряжения (светодиоды);
- ~220V, одна фаза (кухонная вытяжка);
- ~380V, три фазы (станок).
Расчет силы тока по мощности и напряжению в сети постоянного тока
С помощью изученных принципов можно выяснить, как посчитать мощность (пример):
- к источнику 5 V последовательно подключают несколько светодиодов;
- измеряют ток в цепи с помощью мультиметра (0,85 А);
- для определения количества ватт формула «P = I * U» поможет узнать результат: 5 * 0,85 = 4,25 Вт.
Как узнать мощность однофазной нагрузки
Без поправочных коэффициентов можно применить аналогичный алгоритм при подключении лампочки накаливания. Однако в рассматриваемом примере (вытяжка) вычисляют мощность переменного тока по формуле с учетом индуктивных параметров электродвигателя. В этом случае применяют специальный корректирующий множитель – cosϕ.
Треугольник мощностей
Как определить мощность, показывает следующий алгоритм действий:
- берут из сопроводительной документации значение cosϕ (например, 0,75);
- эти же данные производители указывают на типовых шильдиках;
- измеряют ток (1,25 А);
- напряжение известно – 220 B;
- чтобы определить мощность тока, формула дополняется соответствующим множителем:
Pакт = 1,25 * 220 *0,75 = 206,25 Вт.
Как найти мощность тока в трехфазной сети
В этих сетях электричество поступает к потребителям по разным цепям. Вместо «фазного» в данном случае применяют понятие «линейного» напряжения, которое измеряется между отдельными проводниками (Uлин=380В). Чтобы рассчитать мощность корректно, применяют дополнительный множитель (√3 = 1,7321).
Средняя P в активной нагрузке
Зная мощность переменного тока (350 Вт), после простого преобразования базовой формулы можно вычислить:
I = P/ (U * √3 * cosϕ) = 350 / (380 * 1,7321 * 0,75) = 350/ 493,6485 = 0,7 А.