Сравнение
Для чего нужен конденсатор
Суперконденсаторы (СК) в основном используют тогда, когда нужно сохранить информацию в памяти различных устройств и кратковременно поддержать их питание. Ионисторы препятствуют потере данных и сбросу настроек в мобильных электронных аппаратах во время смены элементов питания (батарейки, аккумуляторные батареи).
Обратите внимание! Наряду с этим, нельзя полноценно использовать суперконденсатор вместо аккумулятора (АКБ). Если сравнивать ионистор с АКБ, то можно отметить определённые преимущества и недостатки СК
Преимущества
- Зарядка и разрядка большого по силе тока;
- Устойчивость к потере качеств после 100 тыс. циклов заряда – разряда;
- Внутреннее сопротивление не позволяет возникать быстрому саморазряду, перегреву и разрушению СК;
- После 50 тыс. часов эксплуатации ионистор теряет незначительную часть ёмкости;
- Ионистор обладает незначительной массой, по сравнению с аналогичными электролитическими конденсаторами;
- Невосприимчивость к резким перепадам температуры окружающей среды;
- Стойкость к внешним механическим воздействиям.
Недостатки
- Высокий риск разрушения при коротком замыкании для СК большой ёмкости и низким внутренним сопротивлением;
- Низкое рабочее напряжение;
- Высокая степень саморазряда;
- Замедленная отдача заряда;
- Высокая стоимость.
Закупка
Нашел в китайском магазине ионисторы на 350 фарад. Забил емкость в Yenk-у, оказалось, что их хватит на 2.5 секунды работы стартера. Заказал их, а также балансировочную плату.
Преобразователь сначала купил в китайском магазине повышающий, собрал схему, преобразователь сразу сгорел. Не учел то, что в нем не было ограничения по току, а у ионисторов практически нулевое сопротивление, вот и получилось короткое замыкание на выходе преобразователя. Ограничение по току бывает в повышающе-понижающих, купил — тоже сгорел но не сразу. Купил третий другого исполнения — работает отлично!
Аккумулятор взял обычный от UPS на 7 Ач.
Есть ли смысл менять ионистор вместо автомобильного аккумулятора
Многих автолюбителей не покидает мысль использовать суперконденсатор вместо аккумулятора для автомобиля. Существуют формулы для пересчета емкости из фарад в привычные ампер*часы (1 Ф при напряжении 1 В равен 1/3600 А*ч).
Запуск двигателя от батареи ионисторов.
А дальше не все так радужно. Напряжение при этом быстро падает до 9..10 вольт. Для накопителя это не страшно, и этого даже хватает еще на одну прокрутку стартера. Но вот светосигнальное оборудование и другие электронные устройства на такое низкое напряжение не рассчитаны. Аварийную сигнализацию и ближний свет без запуска двигателя включить не получается. К тому же саморазряд сажает батарею до непригодного для запуска состояния уже через сутки. Хотя многие производители ионисторов декларируют суточный саморазряд в районе 10%, по факту он намного больше. Возможно, это зависит от добросовестности заявителя или от качества изготовления суперконденсатора.
Заявленные кривые саморазряда ионистора.
Напрашивается очевидный вывод. Несмотря на прогнозы специалистов, на сегодняшний день ионистор полноценно заменить аккумуляторную батарею не может. В качестве возимого резервного источника питания суперконденсаторы также непригодны из-за быстрого саморазряда. Вполне возможно применение в гараже в качестве быстрозаряжаемого пускового источника энергии при отсутствии пускозарядного устройства и времени для ожидания зарядки истощенной штатной АКБ. Для полной замены аккумуляторов суперконденсаторами надо подождать развития технологий.
Принцип работы и возможные конструкции
Существует два типа электролитов, которые чаще всего используются сейчас производителями ионисторов: водные (водорастворимые) и органические (водонерастворимые). Безводный электролит позволяет прикладывать напряжение до 3 В к ячейке ионистора, что в два раза выше по сравнению с водорастворимым электролитом, для которого это напряжение не превышает 1,5 В. В данном случае двойной электрический слой работает как изолирующий и при приложении постоянного внешнего напряжения не позволяет протекать сквозному току. При конкретном уровне напряжения определенной полярности за счет электрохимических процессов начнет протекать ток. Величина этого напряжения названа «напряжением разложения» или «напряжением электрохимического распада электролита». Дальнейшее увеличение напряжения заставит электролит разлагаться более интенсивно, приводя к появлению дополнительного тока, и ионистор выйдет из строя. Поэтому при зарядке приложенное к ионистору напряжение ограничено напряжением разложения, вследствие чего довольно часто ионисторы соединяют последовательно.
Как было сказано выше, положительные и отрицательные заряды формируются на поверхности электрода, образуя, таким образом, с зарядом электрода двойной электрический слой. Границей раздела в этом случае будет двойной электрический слой (рис. 2а). Эта область увеличивается при приложении более высокого напряжения (рис. 2б), и накапливаемый заряд увеличивается. Толщина двойного электрического слоя очень мала и сопоставима с размером молекулы, то есть около 5–10 нм. В качестве электродов, например, в ионисторах Panasonic используется активированный уголь (в виде мелкодисперсной фракции), изготовленный по специальной порошковой технологии, и органический электролит. Электролит проникает между частицами активированного угля, и электрод, таким образом, «пропитан» электролитом. Общую емкость ионистора можно представить, как большое количество малых конденсаторов, где каждая частица из активированного угля — своеобразный электрод для малого конденсатора с емкостью, обусловленной двойным электрическим слоем.
Рис. 2. Образование двойного электрического слоя (а) и увеличение заряда при приложении напряжения (б)
Общая емкость ионистора может быть представлена как:
где d — толщина двойного электрического слоя 5–10 нм, S — общая площадь поверхности электрода из активированного угля.
Поскольку электрод ионистора представляет собой совокупность огромного количества частиц активированного угля, он имеет очень большую «развитую» площадь поверхности, приблизительно до 2500–3000 см²/г. Это позволяет получить емкость до нескольких десятков фарад.
На рис. 3 представлена одна из возможных конструкций ионистора в поперечном разрезе на примере EN серии Panasonic. Между электродами для предотвращения проникновения ионов расположен «сепаратор» с хорошими изоляционными свойствами, что позволяет не допустить короткого замыкания между электродами.
Рис. 3. Одна из возможных конструкций ионистора в поперечном разрезе на примере EN серии Panasonic
Практичный источник питания с суперконденсатором
В практических решениях широко используются суперконденсаторы, например, для питания часов реального времени.
В подобных схемах необходимо использовать диод, который защитит цепь зарядки от «обратного тока» от самого суперконденсатора. Схема может выглядеть так:
Напряжение питания V0 может поступать, например, от Ардуино. Диод D1 защищает источник питания от «смещения» тока от суперконденсатора – чтобы на выход стабилизатора V0 не поступало напряжение с конденсатора.
Катод диода через резистор подключен к суперконденсатору C1. Сопротивление резистора определяется, как и выше, учитывая постоянную времени.
Суперконденсатор вместо аккумулятора
Среди последних новинок науки и техники необходимо отметить появление конденсатора нового типа – ионистор, который также называют суперконденсатор. Что же это за зверь, и можно ли его использовать в автомобильном видеорегистраторе и других электронных приборах в качестве резервного источника питания?
Может ли ионистор заменить аккумулятор?
Из школьного курса физики известно, что конденсатор может запасать энергию, накапливая заряд электричества. Вот только величина этого заряда очень мала, поэтому его хватает только на хорошую искру при коротком замыкании. Также школьники используют металлобумажные конденсаторы переменного тока на 400…1000 Вольт для того, чтобы лупить друг друга электротоком, предварительно зарядив его в розетке 220 В. А в основном конденсаторы используют как радиокомпонент в электронных приборах.
Форм-фактор ионисторов, которые используются в качестве резервных аккумуляторов
Но в конце прошлого века в секретных лабораториях был придуман новый тип конденсатора, в котором вместо металлической ленты используется электролит и другие хитрые химические вещества. Благодаря такой конструкции новый тип конденсатора при малых размерах имеет громадную емкость, которую уже можно использовать для накопления заряда, достаточного для кратковременной работы электронных устройств с малым потреблением тока. Он получил название ионистор из-за того, что функционирует благодаря ионному переносу в химической среде между электродами.
Вот такой мощный ионистор на 3000 Фарад может завести автомобиль
В наше время ионисторы используются как резервный источник питания. Например, на Алиэкспресс за 5…10 баксов можно купить 5-вольтовый ионистор, который получает полную зарядку всего за 10…100 секунд. Однако он может питать средний светодиодный фонарик в течение 20…30 минут.
Обзор китайского ионистора
Теперь разберемся, сможет ли суперконденсатор заменить аккумулятор в автомобильном видеорегистраторе? В регике нет компонентов, которые бы потребляют большой ток – сервоприводы, электродвигатели, мощные лампы освещения. Поэтому расход тока достаточно мал – 50…100 мА. Средней паршивости ионистор сможет обеспечить работу видеорегистратора в течение 3…10 минут. Это более чем достаточно, чтобы дописать до конца видеоролик и корректно завершить работу.
В этом видеорегистраторе установлен суперконденсатор на 7,5 Фарад вместо аккумулятора
Так что, если вы колеблетесь — покупать ли видеорегистратор с суперконденсатором вместо встроенного аккумулятора, то все сомнения напрасны. Этот прибор выполнит все необходимые функции в вашем автомобиле, даже если в случае ДТП будет отключена бортовая сеть. Однако регистратор такого типа нельзя будет использовать как обычную переносную видеокамеру вне салона автомобиля – для уличной видеосъемки потребуется внешний источник питания.
Принцип действия
Принцип действия ионистора похож с обычным конденсатором. Но эти приборы различаются применяемыми материалами. Обкладки делаются из пористого материала, который представляет собой отличный проводник. Это позволяет увеличить емкость устройства. В качестве диэлектрика применяется электролит, что позволяет уменьшить расстояние между обкладками и повысить емкость.
В суперконденсаторе заряд накапливается в результате формирования двойного электрического слоя на электроде при адсорбции ионов из электролитов.
В основе принципа работы – разложение разности потенциалов к токовыводам. При этом на катоде создаются отрицательные ионы, а на аноде – положительные. Сепаратор пропускает ионы электролита и предотвращает короткое замыкание между электродами. Электричество сохраняется статическим способом. В процессе заряда-разряда отсутствуют реакции электрохимического типа.
Суперконденсаторы способны накапливать большое количество энергии за короткий промежуток времени, что позволяет уменьшить время для подзарядки приборов.
Современные ионные аккумуляторы могут отдавать только 60 % электроэнергии, израсходованной на их зарядку. У суперконденсаторов данный показатель превышает 90 %. Другим важным преимуществом является большой ресурс. У многих видов аккумуляторов уменьшение емкости происходит после нескольких сотен циклов разряда – разряда. А ионисторы выдерживают до миллиона циклов без нарушений.
Конструкции элементарных ячеек позволяют создать модули различных размеров и любого напряжения. Устройства могут быть выполнены с охлаждением разного типа – воздушного, водяного и естественного.
Накапливаемая энергия
Количество энергии, запасенной в конденсаторе, выраженное в джоулях:
E = CU2/2, где C — емкость, выраженная в фарадах, U — напряжение на обкладках, выраженное в вольтах.
Количество энергии, запасенной в конденсаторе, выраженное в кВтч, равно:
W = CU2/7200000
Отсюда, конденсатор емкостью 3000 Ф с напряжением между обкладками 2,5 В способен запасти в себе только 0,0026 кВтч. Как это можно соотнести, например, с литий-ионным аккумулятором? Если принять его выходное напряжение не зависящим от степени разряда и равным 3,6 В, то количество энергии 0,0026 кВтч будет запасено в литий-ионном аккумуляторе емкостью 0,72 Ач. Увы, весьма скромный результат.
2018: Выход на рынок
Холдинг GS Group 25 мая 2018 года объявила о выходе на рынок решений для электроэнергетики с портфелем продуктов под брендом GS Electric. Флагманский продукт представленного направления бизнеса — суперконденсатор на базе собственных инновационных разработок, произведенный из российских компонентов. По данным GS Group, компания уже инвестировала в разработку технологий, лежащих в основе устройства, более 200 млн рублей.
Суперконденсатор GS Electric
GS Group разрабатывает и производит суперконденсаторы под брендом GS Electric с двойным электрическим слоем в инновационном кластере «Технополис GS» (инвестиционный проект холдинга в г. Гусеве Калининградской области). Это устройство — результат многолетних научно-исследовательских и опытно-конструкторских работ предприятия «Наноуглеродные материалы» (НУМ) в составе «Технополиса GS».
По сравнению с другими суперконденсаторами, представленными на отечественном рынке, скорость отдачи энергии устройств под брендом GS Electric — 0,3 секунды — в 3,5 раза выше. Это достигается благодаря ноу-хау предприятия НУМ: в основе суперконденсаторов — наноуглеродный материал в виде углеродной ткани, пояснили в GS Group. Разработка позволяет аккумулировать больший заряд электроэнергии по сравнению с аналогичными устройствами, в которых применяется углеродный порошок. Первые образцы суперконденсаторов GS Electric могут обеспечивать кратковременные токовые значения в диапазоне до 700 Ампер, утверждают в компании.
Все компоненты суперконденсаторов разрабатываются и производятся в России из отечественного сырья и имеют невысокую себестоимость. В конструкции суперконденсаторов GS Electric используются водные электролиты — экологичные, пожаро- и взрывобезопасные — в отличие от органических, которые применяются в большинстве представленных на мировом рынке устройств. Благодаря этому суперконденсаторы безопасны для здоровья людей и окружающей среды: их можно использовать в людных местах, в том числе в учреждениях здравоохранения, пассажирском и коммерческом транспорте, — утверждают в GS Group. |
Среди потенциальных заказчиков суперконденсаторов GS Electric — производители электрического и гибридного транспорта, предприятия, использующие источники аварийного и бесперебойного питания (больницы, телекоммуникационные компании), домохозяйства и социальные объекты. Устройства востребованы у производителей систем электрогенерации на базе возобновляемых источников энергии, генерирующих компаний, а также электросетевых организаций для выравнивания графиков нагрузки потребителей электроэнергии. Большой потенциал — у сегмента электрического и гибридного транспорта, оценили в компании.
Мы рады представить на рынке наработанные за несколько лет компетенции в области электроэнергетики. Бренд GS Electric объединит инновационные разработки GS Group в сфере накопления и сохранения электрической энергии, а также системы внутреннего и уличного освещения, которые производит завод «Пранкор» (в составе «Технополиса GS»), и другие смежные направления. В течение двух лет мы запустим в «Технополисе GS» опытное мелкосерийное производство линейки суперконденсаторов GS Electric различной емкости и назначения, а также сопутствующего оборудования (зарядных устройств в разных форм-факторах, адаптеров и прочего). Для коммерциализации направления бизнеса GS Group готов инвестировать в партнерские проекты с предприятиями, развивающими технологии и производящими оборудование на основе суперконденсаторов и другие смежные решения, — заявил Андрей Безруков, директор по стратегическим проектам и коммуникациям GS Group. |
Применение двойного электрического слоя
Продолжительное время обладателями высоких значений внутренней емкости являлись конденсаторы электролитического вида. В различных устройствах изготавливались разнообразные обкладки, у одних они производились из металла, в других в виде электролита, где изоляцией являлся оксид используемого металла. Причем у обыкновенных конденсаторов внутренняя емкость имеет значение значительно ниже и равна долям фарада, чего на практике недостаточно для питания потребителей вместо аккумуляторных батарей.
Для обеспечения питания для электропотребителей были разработаны устройства на основе применения двойного электрического поля. Данное явление может возникать на границах материала или вещества при определенных условиях в жидком или твердом состоянии. В результате образуются два слоя разнополярных ионов одинакового размера, получается своеобразный конденсатор с электродами, между которыми образуется минимальное расстояние равное нескольким атомам.
Применение двойного электрического слоя
Продолжительное время обладателями высоких значений внутренней емкости являлись конденсаторы электролитического вида. В различных устройствах изготавливались разнообразные обкладки, у одних они производились из металла, в других в виде электролита, где изоляцией являлся оксид используемого металла. Причем у обыкновенных конденсаторов внутренняя емкость имеет значение значительно ниже и равна долям фарада, чего на практике недостаточно для питания потребителей вместо аккумуляторных батарей.
Для обеспечения питания для электропотребителей были разработаны устройства на основе применения двойного электрического поля. Данное явление может возникать на границах материала или вещества при определенных условиях в жидком или твердом состоянии. В результате образуются два слоя разнополярных ионов одинакового размера, получается своеобразный конденсатор с электродами, между которыми образуется минимальное расстояние равное нескольким атомам.
Применение
Ионисторы часто встречаются в устройстве цифрового оборудования. Они играют роль запасного источника питания микроконтроллера, микросхемы и т.д. С помощью такого источника при выключенном основном питании аппаратура способна сохранять настройки и обеспечивать питание встроенных часов. Например, в некоторых аудиоплеерах применяется миниатюрный ионистор.
В момент замены батареек или аккумуляторов в плеере могут сбиться настройки частоты радиостанции, часов. Благодаря встроенному ионистору этого не происходит. Он питает электронную схему.
Его емкость значительно меньше аккумулятора, но его хватает на несколько суток, чтобы сохранить работу часов и настроек. Также ультраконденсаторы используются для работы таймеров телевизора, микроволновой печи, сложного медицинского оборудования.
Были случаи опытного использования ионисторов, например, для проектирования электромагнитной пушки, которую называют Гаусс оружием. В быту ионисторы используются в схемах маломощных светодиодных фонариков. Его зарядка может выполняться от солнечных элементов.
Перспективы использования
Ионисторы с каждым годом становятся все совершенней
Важным параметром, которому ученые уделяют особое внимание – является увеличение удельной емкости. Через какое – то время планируется подобными приборами заменить аккумуляторы
Такие элементы позволяют заменить батареи в различных технических сферах. Специалисты возлагают большие надежды на разработку графеновых устройств. Применение инновационного материала поможет уже в ближайшее время создать изделия с высокими показателями запасаемой удельной энергии.
Будет интересно Конденсатор — простыми словами о сложном
Ионистор нового образца в несколько раз превосходит альтернативные варианты. Данные элементы имеют в своей основе пористую структуру. Применяется графен, на котором распределяются частицы рутения. Преимуществом графеновой пены является способность удержания частиц оксидов переходных металлов. Подобные суперконденсаторы работают на водном электролите, что позволяет обеспечить безопасность эксплуатации.
В перспективе новинки будут применяться в сфере изготовления персонального электрического транспорта. Приборы на основе графеновой пены могут перезаряжаться до 8000 раз без ухудшения качественных характеристик. В сфере автомобильного строения проводятся разработки альтернативных разновидностей топлива и устройств накопления энергии высокой эффективности. Подобные приборы могут применяться для грузового транспорта, электрических автомобилей и поездов.
Батарея из суперконденсаторов
В автомобилестроении суперконденсаторные батареи находят следующие применения:
- Пусковое устройство подсоединяется параллельно стартерным батареям. Применяется для повышения эксплуатационного срока и улучшения пусковых характеристик двигателя.
- Для стабильного питания акустических систем большой мощности в автомобиле.
- Буферные батареи подходят для применения в гибридном транспорте. Они характеризуются небольшой емкостью и значительной выходной мощностью.
- Тяговые батареи актуальны при использовании в качестве основного источника питания.
Суперконденсаторы обладают множеством преимуществ по сравнению с аккумуляторами в автомобильной промышленности. Они превосходно выдерживают перепады напряжения. Приборы характеризуются легкостью, поэтому можно устанавливать большое их количество. Для сферы микроэлектроники разрабатываются новые технологии по производству компактных суперконденсаторов.
При производстве электродов применяются специальные методы осаждения на тонкую подложку из диоксида кремния специальной углеродистой пленки. Использование суперконденсаторов позволяет внедрить в жизнь экологические технологии экономии энергии. В перспективе предусмотрено расширение сфер применения таких приспособлений для отраслей автотранспорта, мобильной техники и средств связи.
Практическое применение суперконденсаторов
Современные ионисторы нашли широкое применение в таких сферах, как:
- Транспортные средства;
- Бытовая электроника.
Транспортные средства
Суперконденсаторы с недавнего времени стали встраивать в транспортные средства, питанием которых является электроэнергия.
Тяжёлый и общественный транспорт
Не так давно на улицы Минска вышли на маршруты электробусы совместного производства южно-корейской компании Hyundai Motor и белорусского предприятия Белкоммунмаш. Новый общественный транспорт оснащён электрическим двигателем, питающимся энергией бортовых ионисторов. Москвичей порадовали электрические автобусы отечественного производства, вышедшие на городские маршруты в мае 2020 года.
Городской транспорт на ионисторах способен проходить маршрут до конечной остановки с подзарядкой на 2 или 3 остановках. Время подзарядки занимает 2-3 минуты, что вполне хватает для высадки и посадки пассажиров. Полную зарядку конденсаторной системы питания производят на конечных станциях в течение 8-10 минут.
Автомобили
Мировые лидеры по производству автомобилей постоянно совершенствуют свои электромобили
На международных выставках особое внимание уделяется машинам, питание которых обеспечивают суперконденсаторы
Автомобильный суперконденсатор
Недавно российскими производителями был представлен Ё-мобиль, использующий суперконденсаторы как основной источник электроэнергии.
Дополнительная информация. В автомашинах, работающих на жидком топливе, стали всё чаще применять ионисторы для лёгкого пуска двигателя в условиях низких температур.
СК для пуска двигателя
Автогонки
Автомобильные компании, производящие электромобили и их гибридные модификации, регулярно проводят автогонки с участием машин на ионисторах. Это делается для рекламы и продвижения своей продукции на мировом авторынке.
Бытовая электроника
Ни одно сложное электронное устройство не обходится без суперконденсаторов. Их можно найти в резервном питании ноутбуков, смартфонов и в других приборах бытового назначения. Ионисторы необходимы там, где нужно поддержать электропитание во время прерывания связи с основным источником тока.
Источники бесперебойного питания (ИБП) построены на ионисторах. ИБП незаменимы там, где электроснабжение зависит от непостоянных источников электроэнергии, таких как ветрогенераторы, солнечные батареи и пр.
Ионистор для ИБП
Перспективы развития
Современные технологии и разработки позволяют предположить, что ионисторы в скором времени будут применяться практически во всех энергоемких производствах, космической промышленности, медицине и военной технике. Постепенно будет увеличиваться внутренняя емкость суперконденсаторов, в результате чего станет возможным заменить старые свинцово-кислотные батареи.
Также станет возможным внедрение в различные электронные устройства с регулированием и управлением. Причем станет доступным производство экологически чистых источников экономии энергии, которые значительно превышают аналоги по характеристикам. А также суперконденсаторы находят широкое применение в автомобильном транспорте, мобильных и электронных устройствах.
Полное вытеснение обычных аккумуляторов пока не происходит так как суперконденсаторы используются только в определенных областях. Однако наука не стоит на месте и постоянно развивается, в результате чего в скором времени мы сможем увидеть данные устройства в автомобильной технике, мобильных и электронных устройствах.
Вам также может быть интересно
Аккумуляторы 0
В чём минусы конденсатора в сравнении с аккумулятором?
- • Низкая ёмкость. Самый большой коммерческий суперконденсатор в фарадах (F) накапливает лишь 20% от электрической энергии в сравнимой батарее.
- • Не держит. Аккумуляторы предлагают намного больше плотности энергии на единицу массы, обеспечивая долгую автономность без внешнего питания.
- • Саморазряд. Степень саморазряда существенно превышает таковую у самого слабого аккумулятора.
- • Малоприменим. В итоге даже самый мощный суперконденсатор (обеспечивающий лучшую величину энергии) не сможет дольше минуты питать «аварийку» у заглушенного автомобиля и подсветку экрана у работающего телефона.
Ионистор вместо аккумулятора — практический обзор сборки суперконденсатора
Ионистор вместо аккумулятора (он же суперконденсатор, ультраконденсатор) — в принципе это тот же конденсатор, только имеющий большую емкость, которую можно сравнить с аккумулятором. Вот именно такое устройство рассчитанное на напряжение 12v я собрал для нужд в бытовом хозяйстве. Практически такой прибор способен работать во много раз дольше, чем аккумуляторы различных типов, конечно при условии эксплуатации в определенных режимах. Вот в чем особенность применения ионистора вместо аккумулятора и его преимущество:
- прибору не страшен полный разряд до нулевого значения;
- в несколько сотен раз больше способен выдержать моментов заряда/разряда;
- прибор не боится максимальных значений по току.
Но не только такие особенности имеются у ионистора использующегося вместо аккумулятора, о них я скажу после выполнения сборки накопителя.
Необходимые компоненты
- Суперконденсаторы в количестве восьми штук с номиналом 2,7v х 500F
- Одножильый провод сечением от 2 мм²
- Пару винтов и гаек
- Инструмент: паяльник, пинцет, кусачки.
- Расходники: припой, флюс.
Ионистор вместо аккумулятора — порядок сборки батареи
В данном обзоре я буду собирать накопитель энергии с применением восьми конденсаторов, включенных по встречно-параллельной схеме. В принципе будет организованно четыре пары по две емкости включенных параллельно, а пары в свою очередь соединены последовательно.
Эмалированный провод нужно выровнять и убрать с него лак. Выполняется это с помощью рабочего ножа или специального инструмента для зачистки проводов ( у кого он имеется).
Формируем медный провод в соединительные шины
Необходимо изготовить три квадратных элемента и пару полюсов для клемм «+» и «-«
К сформированным изделиям для контактов припаиваем гайки, к которым будут подключаться провода питания.
Залуживаем места соединения квадратов.
Соединяем емкости в батарею, припаиваем проводники к выводам конденсатора, соблюдая при этом полярность.
Вначале нужно собрать четыре группы.
Теперь припаиваем шины для подключения проводов питания.
На этом этапе нужно зарядить батарею током 5А.
По истечению пяти минут накопитель будет полностью заряжен.
Делаем испытательный тест лампой накаливания.
Делаем короткое замыкание выходных контактов — провод разогрелся до красного состояния.
Испытываем батарею подключением электромотора.
Где такая конструкцию используется
Использовать можно ионистор вместо аккумулятора, там где присутствуют большие и цикличные нагрузки по току. Классический пример: накопительная емкость для сабвуфера установленного в автомобиле. Кроме этого суперконденсатор может быть задействован в устройствах где происходят постоянные циклы зарядки/разрядки, например: устройства накопления солнечной энергии с последующей ее передачей фонарям освещения в ночное время.
Здесь приведены только два примера использования ионистора вместо аккумулятора, но на самом деле их существенно больше
Стоимость компонентов для сборки такого прибора вполне приемлема, особенно если взять во внимание колоссальный срок их эксплуатации с учетом применения по назначению
Сборка ионистора вместо аккумулятора 12v, 100A
Подключение электромотора своими руками
Как подобрать конденсатор для однофазного двигателя, уже понятно. Отбор конденсаторов для трехфазного мотора рассмотрен. Как же практически смонтировать схему для пуска двигателя, что для этого необходимо?
Схема состоит из следующих компонентов:
- двигатель (до 3 квт);
- конденсаторы: пусковой и рабочий, которые отличаются по ёмкости;
- пусковая кнопка ПНВС на 220 В.
Зачем нужна пусковая кнопка? Для кратковременного подключения электролитического двухполюсника и начала вращения двигателя. Собирается цепь согласно схеме на картинке ниже. Все соединения производятся под болтовые зажимы. Оголённые участки проводов подлежат обязательной изоляции.
Применение запускающих и рабочих конденсаторов позволяет осуществить запуск двигателей в любой цепи. Емкости двухполюсников должно быть достаточно для начала вращения и устойчивой работы под нагрузкой. Детали предпочтительно использовать новые.
Величина емкости: рабочей и пусковой
Удельную ёмкость этих элементов можно высчитать, используя онлайн-калькулятор в сети интернет. Расчёт делают, самостоятельно пользуясь формулами.
Для запускающего элемента
Известны две формулы для определения ёмкости пускового двухполюсника:
- для схемы «звезда» – Cп = 2800*I/U;
- для схемы «треугольник» – Cп = 4800*I/U.
Номинальный ток рассчитывают, пользуясь выражением:
Здесь:
- P – мощность мотора;
- U – напряжение сети;
- η – КПД;
- cosϕ – коэффициент мощности.
Для рабочего элемента
Подобрать рабочий конденсатор можно из расчёта:
Запущенный и устойчиво работающий двигатель нуждается в применении рабочей ёмкости для вращения под нагрузкой.
Техническая реализация
Ионистор или суперконденсатор представляет собой устройство в конструкции которого имеются два электрода или пластины, изготовленные из активированного угля. Пространство между ними заполнено специальным электролитом, также между обкладками располагается мембрана, благодаря которой не происходит перемещение частиц электродов, а электролит свободно проникает в данное пространство.
Причем стоит отметить, что самостоятельно данные устройства не имеют определения полярности заряда конкретных электродов. Это свойство является одним из главных отличий от конденсаторов электролитического вида, в которых несоблюдение правильного подключения приводило к преждевременному выходу из строя. Однако при производстве на ионисторах наносится маркировка с указанием полярности, в результате того, что в процессе производства данные накопители энергии уже выходят заряженные.