Что такое ионистор?

Отличия ионисторов от аккумуляторов

Суперконденсаторы иногда называют промежуточным звеном между конденсаторами и аккумуляторами. На самом деле это не совсем верно. Ионистор по своей сути – это все же конденсатор.


Внешний вид ионисторов.

Принцип работы любого аккумулятора основан на обратимых электрохимических реакциях. При зарядке они идут в одну сторону, при разрядке – в обратную. Так, в свинцово-кислотной автомобильной батарее под действием зарядного напряжения сульфат свинца и вода реагируют с образованием свинца, оксида свинца и серной кислоты. Под действием разрядного тока происходит обратная реакция. Количество циклов заряд-разряд ограничивается образованием сульфата свинца, постепенно покрывающего пластины, и коррозией металлических элементов.


Электрохимические реакции в свинцово-кислотной батарее.

Иное дело конденсатор. В общем случае в нем электрохимических реакций не происходит. Прибор состоит из двух пластин (обкладок), разделенных слоем диэлектрика, причем форма обкладок может быть различной. Для компактности конденсаторы часто изготавливают в виде двух полосок фольги, разделенных диэлектриком и свернутых в плоский или круглый рулон.

Заряд накапливается на пластинах под действием приложенного электрического поля. При этом не происходит химических реакций, не происходит расхода и преобразования реагентов, пластины и диэлектрик не деградируют во время накопления и отдачи энергии.

Емкость конденсатора зависит от трех составляющих:

  • свойств диэлектрика;
  • площади обкладок (чем она больше, тем больше емкость);
  • расстояния между пластинами (чем оно меньше, тем больше емкость).


Параметры, от которых зависит емкость конденсатора.

Отсюда пути для увеличения емкости:

  • увеличение площади обкладок;
  • уменьшение расстояния между ними.

Совершенствование диэлектрических свойств изолятора – путь не очень перспективный, прорывов здесь ожидать сложно. Создатели ионисторов достигли цели с помощью первых двух способов.

Расстояние между обкладками удалось радикально сократить путем применения двойного электрического слоя. В нем обкладками служат ионы – носители противоположного заряда, группирующиеся на границе раздела металл-электролит. Расстояние между ними крайне мало по сравнению с обычными конденсаторами и даже с оксидными. Вообще, принципы построения ионистора схожи с принципами оксидного конденсатора. Суперконденсатор получил от оксидников некоторые «наследственные болезни», например, небольшое (даже меньшее – в пределах 2..10 вольт) рабочее напряжение. Более высокий уровень тонкий слой межобкладочного «диэлектрика» не выдерживает.

Принципиально большую площадь обкладок удалось получить применением пористого материала. Обычно применяется активированный уголь или вспененный металл. В итоге емкость ионисторов может достигать несколько сотен фарад. Это очень большая величина – для сравнения, земной шар имеет электрическую емкость около 1 Ф. Причем заряжать такой суперкоденсатор можно большими токами. В результате процесс может занять секунды или минуты.


Распределение заряженных частиц в суперконденсаторе.

На практике анод и катод разделяют сепаратором. Это позволяет выполнить ионистор в виде рулона или в виде многослойной конструкции и избежать короткого замыкания между электродами. В процессах запасания и отдачи энергии сепаратор не участвует.


Конструкция многослойного ионистора.

Существует другой тип ионисторов – псевдоконденсаторы. Они по своему принципу работы ближе к аккумуляторам, потому что для накопления заряда также используют обратимые электрохимические процессы. Основное отличие электрохимических конденсаторов от АКБ в том, что реакции идут только на поверхностном слое, за счет этого скорость пополнения запаса энергии ближе к конденсаторам. От аккумуляторов же унаследована склонность к электрохимической деградации элементов конструкции. Это приводит к сокращению периода эксплуатации. Такой суперконденсатор выдерживает порядка десятков тысяч циклов заряд-разряд, в отличие от сотен тысяч для обычных ионисторов (они в теории имеют бесконечное время жизни). Зато у псевдоконденсаторов большая удельная емкость и они считаются более перспективными в плане развития технологии.

Видео-эксперимент с питанием шуруповерта от конденсаторов.

Принцип работы ионистора

Как уже было сказано, ионистор сильно напоминает конденсатор, но в отличие от него он не имеет диэлектрического слоя вокруг себя. Обкладки представляют собой особые вещества, которые копят заряды противоположных знаков.

Известно, что емкостные характеристики конденсаторов, как и ионисторов, зависят от величины обкладок. Рассматриваемый элемент обладает обкладками из активированного угля или специально подготовленного вспененного углерода. Это обеспечивает повышенную площадь обкладок.

Вам это будет интересно Монтаж и подключение теплого пола


Простая схема, демонстрирующая принцип работы

Ионистор обладает выводами, которые сепарированы разделителем, помещенным в электролиты. Нужно это для предотвращения вероятных коротких замыканий. Электролиты чаще всего представляют собой кислоты и щелочи в любом приемлемом агрегатном состоянии.

Обратите внимание! При использовании электролитического йода или серебра можно получить качественный ионистор со значительными емкостными характеристиками, способностью работать при низких температурах и малым саморазрядом. Во время протекания электрических и химических реакций часть электронов отделяется от полюсов приспособления и обеспечивает создание положительного заряда

Отрицательно заряженные ионы, которые находятся в электролите, притягиваются этими полюсами со знаком «плюс». В результате получается электрический слой

Во время протекания электрических и химических реакций часть электронов отделяется от полюсов приспособления и обеспечивает создание положительного заряда. Отрицательно заряженные ионы, которые находятся в электролите, притягиваются этими полюсами со знаком «плюс». В результате получается электрический слой.


Ионистор на плате магнитолы

Сам же заряд сосредотачивается на границах углеродных полюсов и электролитического вещества. Слой очень тонкий, всего 1-5 нанометров в толщину, а это значительно повышает емкость приспособления.

Разновидности суперконденсаторов

Где применяется освещение искусственное

Ионисторы делятся на три вида:

  1. Идеальный ионистор. Название было присвоено ионному конденсатору, в котором электроды из углерода поляризовались на 100%. При полном отсутствии электрохимических процессов энергия накапливается благодаря ионному переносу электронов с одного на другой электрод. Электролитом в «идеальных» ионисторах служат растворы основания KOH и серной кислоты H2SO4.
  2. Гибридные ионисторы – это конденсаторы со слабо поляризуемыми электродами. Скопление энергии в ДЭС происходит на поверхности одного из электродов.
  3. Псевдоионисторы обладают высокой удельной ёмкостью. На поверхности электродов происходят возвратные электрохимические реакции.

Устройство ионистора

Конструкция

Рис. 1. Чертеж и конструкция самодельного конденсатора переменной емкости с воздушным диэлектриком.

Обозначения на рисунке:

Устройство КПЕ показано на рис. 1. Он состоит из статора (детали 1, 12), ротора (детали 5, 6, 8, 18, 19) и корпуса (детали 2, 10, 11, 16, 17). Его ёмкость зависит от угла поворота ротора относительно статора, т. е. от взаимно перекрываемой площади роторных и статорных пластин, их числа и воздушного зазора между ними.

Пластины статора 1 закреплены пайкой на фиксаторах 12, которые, в свою очередь, закреплены в отверстиях боковых планок 16 корпуса КПЕ. Пластины ротора 5 припаяны к валику 6 и фиксатору 8. Валик 6 вращается в подшипниках 14, закреплённых на планках 16 винтами 15.

При изготовлении КПЕ заготовки одинаковых деталей (пластин ротора и статора, подшипников 14, планок 16) рекомендуется обрабатывать совместно, объединив их в пакеты с помощью заклёпок или винтов с гайками (именно для этого предусмотрены отверстия диаметром 2,6 мм в пластинах ротора).

Разумеется, форма пластин, их число и зазор между ними могут быть и иными, здесь многое зависит от возможностей и опыта радиолюбителя, например, браться сразу за изготовление конденсатора с зазором менее 1 мм при отсутствии достаточного опыта в слесарном деле вряд ли стоит.

Характеристика заряда

Время заряда 1-10 секунд. Первоначальный заряд может быть выполнен очень быстро, а заряд верхней части займет дополнительное время. Необходимо предусмотреть ограничение пускового тока при зарядке пустого суперконденсатора, поскольку он будет вытягивать все возможное. Ионистор не подлежит перезарядке и не требует обнаружения полной зарядки, ток просто перестает течь при заполнении. Сравнение производительности между ионистором для автомобиля и Li-ионом.

Функция Ионистор Литий-ионный (общий)
Время заряда 1-10 секунд 10-60 минут
Жизненный цикл часов 1 млн или 30 000 500 и выше
Напряжение От 2,3 до 2,75 В 3,6 В
Удельная энергия (Вт / кг) 5 (типичный) 120-240
Удельная мощность (Вт / кг) До 10000 1000-3000
Стоимость за кВтч 10 000 $ 250-1,000 $
Срок службы 10-15 лет От 5 до 10 лет
Температура зарядки От -40 до 65 °C От 0 до 45 °C
Температура нагнетания От -40 до 65 °C От -20 до 60 °C

Отличия суперконденсаторов от аккумуляторов

Суперконденсаторы часто применяются вместо батарей. Стандартные конденсаторы способны хранить небольшое количество электроэнергии. Суперконденсаторы могут накапливать заряды в тысячи, миллионы и миллиарды раз больше.

Подобные приборы работают быстрее батарей. Это обусловлено тем, что суперконденсатор создает статистические заряды на твердых телах, а батареи зависят от медленно протекающих химических реакций.

Батареи характеризуются более высокой плотностью энергии, а ионисторы более высокой плотностью мощности. Суперконденсаторы способны функционировать при низких показателях напряжения, а для получения большего напряжения, их нужно последовательно соединить. Такой вариант необходим для более мощного оборудования.

Технология ионисторов может найти применение в энергетике и приборостроении. Одно из применений – использование в ветряных турбинах. Подобные приборы помогают сгладить прерывистое питание от ветра.

В портативных электронных приборах используются источники питания разнообразных типов

Преимущества

  • Если сравнивать ультраконденсаторы с аккумуляторами, то первые из них способны обеспечить значительно большее число циклов заряда и разряда.
  • Цикл заряда и разряда происходит за очень короткое время, что дает возможность применять их в таких ситуациях, когда нельзя установить аккумуляторы, ввиду их длительной зарядки.
  • Устройства такого вида имеют намного меньшую массу и габаритные размеры.
  • Для выполнения заряда не требуется специального зарядного устройства, что упрощает обслуживание.
  • Срок работы ультраконденсаторов значительно выше, по сравнению с батареями аккумуляторов и силовыми конденсаторами.
  • Широкий интервал эксплуатационной температуры от -40 до +70 градусов.

Недостатки

  • Малая величина номинального напряжения. Этот вопрос решают путем соединения нескольких ультраконденсаторов по последовательной схеме, так же, как соединяют несколько гальванических элементов для увеличения напряжения.
  • Повышенная цена на такие устройства способствует удорожанию изделий, в которых они используются. По заверению ученых, скоро эта проблема станет неактуальной, так как технологии постоянно развиваются, и стоимость подобных устройств снижается.
  • Ионисторы не способны накопить большое количество энергии, так как имеют незначительную энергетическую плотность, и не могут обладать мощностью, сравнимой с аккумуляторами. Это негативно влияет на область их использования. Эта проблема может частично решиться путем подключения нескольких ионисторов вместе, по параллельной схеме.
  • Необходимость соблюдения полярности при подключении.
  • Не допускается короткое замыкание между электродами, так как от этого сильно возрастет температура ультраконденсатора, и он может выйти из строя.
  • Ионисторы хорошо работают в цепях пульсирующего и постоянного тока. Но при высокочастотном пульсирующем токе они сильно нагреваются ввиду их большого внутреннего сопротивления, что часто приводит к выходу из строя.


Плоский ионистор

Моя Тесла-лаборатория. Конденсатор переменной емкости.


Это изделие не является полностью самостоятельным. Это только часть более сложного прибора, модель, которая предназначена для проверки технологии. Но недавняя публикация hamster76 — замечательный радиоприемник показал мне, что этой разработкой стоит поделится. Поэтому пишу в «Помощь стим-мастеру» В свой публикации hamster76 рассказал о своих проблемах с поврежденным конденсатором, но ведь переменный конденсатор — сам по себе Тесла-прибор! Теслапанк конденсатор вполне может украсить какой-либо прибор.

В 20-х годах из двух способов настройки приемника — изменение индуктивности и изменение емкости в колебательном контуре предпочтение отдавалось изменению индуктивности. Первая причина этого — теоретическая: такая схема, потенциально, позволяет получить большую добротность контура и, как следствие, лучшие качества радиоприема. Вторая — технологическая. Конденсатор переменной емкости — сложный механический прибор, требующий высокой точности изготовления. Уже в 30-е годы ситуация изменилась — с одной стороны технические возможности радиопромышленности выросли, с другой стороны распространение супергетеродинной схемы приема требовало синхронной перестройки двух контуров одновременно, а сдвоенный конденсатор переменной емкости оказалось изготовить проще, чем сдвоенный вариатор. С тех пор вплоть до самого конца XX века переменный конденсатор стал практически обязательным элементом любого радиоустройства.

Главные требования к конденсатору это: 1) Непрерывность электрического контакта. В моменты когда конденсатор «отрывается» от схемы или, наоборот, «закорачивается», радиослушатель слышит очень неприятные щелчки. 2) Плавность хода. При плохой механике очень трудно настроится на станцию, и «удерживать волну» в дальнейшем. 3) Большой диапазон перестраиваемой емкости — позволяет захватить больше станций. 4) Малая минимальная емкость.

Для того, чтобы избежать проблемы плохого контакта ротора использована схема бесконтактного взаимодействия со статором. Пластины ротора никуда не подключены, они взаимодействуют со статором только через емкость дополнительных обкладок, это позволяет избежать проблемы плохого контакта. При повороте ротора емкости между пластинами перераспределяются, и общая емкость конденсатора меняется.

Такая конструкция имеет недостатки: больший, чем в других схемах, размер обкладок, нелинейность изменения емкости при повороте ротора, малый «рабочий диапазон» поворота ротора. Угол между положениями максимальной и минимальной емкости получается всего 90 градусов.

Зато конструкция получается очень простой, без подвижных электрических контактов. Кроме того, симметрия конструкции значительно облегчает устройство поворотной оси.

Конденсатор состоит из деревянных основания — статора и вращающейся на оси ручки — ротора. Они вырезаны из доски с помощью коронок и обточены на оси дрели

Диаметр статора (это, впрочем, совсем не важно.) 120 мм, диаметр ротора (а вот он влияет на максимальную емкость!) — 80 мм. Между статором и ротором вставлена изолирующая прокладка из тонкого картона

И на статоре и на роторе закреплены (маленькими гвоздиками) одинаковые полукруглые пластины из жести, пластины статора соединены проволокой с клеммами. Ось изготовлена из винта, на который надета скользкая пластмассовая трубка. Снизу оси, в выемке статора, установлена коническая пружина, взятая от контейнера для батареек. Пружина обеспечивает равномерность сжатия деталей и равномерность вращения. Сверху конструкцию фиксирует декоративная гайка.

Получившийся конденсатор имеет емкость 6-30 пФ. Это не очень много. Диапазон перестройки для длинных и средних волн должен быть около 40, для ультракоротких — 10. Самый простой способ улучшить характеристики — увеличить размер. Увеличение размера обкладок увеличит максимальную емкость. Кроме того, выяснилось, что большая часть минимальной емкости — это емкость массивных клемм, расположенных слишком близко друг к другу. Подключения к обкладкам стоило делать на максимальном расстоянии друг от друга.

Материалы на основе графена

Ионистор характеризуется способностью быстрого заряда, гораздо быстрее, чем у традиционной батареи, но он не способен хранить столько же энергии, как батарея, так как имеет более низкую плотность энергии. Повышение эффективности у них достигается благодаря использованию графеновых и углеродных нанотрубок. Они помогут в будущем ионисторам полностью вытеснить электрохимические батареи. Нанотехнология сегодня является источником многих нововведений, особенно в е-мобиле.

Графен увеличивает емкость ионисторов. Этот революционный материал состоит из листов, толщина которых может быть ограничена толщиной атома углерода и атомная структура которого является ультраплотной. Такие характеристики способны заменить кремний в электронике. Пористый сепаратор помещается между двумя электродами. Однако вариации механизма хранения и выбор материала электрода приводят к различным классификациям ионисторов большой емкости:

  1. Электрохимические двухслойные конденсаторы (EDLC), которые по большей части используют высокоуглеродистые углеродные электроды и сохраняют свою энергию за счет быстрой адсорбции ионов на границе раздела электрода/электролита.
  2. Psuedo-конденсаторы, основаны на фагадическом процессе переноса заряда на поверхности электрода или вблизи него. В этом случае проводящие полимеры и оксиды переходных металлов остаются электрохимическими активными материалами,например, как в электронных часах на батарейках.

Гибкие устройства на основе полимеров

Ионистор набирает и сохраняет энергию с высокой скоростью, образуя электрохимические двойные слои зарядов или посредством поверхностных окислительно-восстановительных реакций, что приводит к высокой плотности мощности с длительной циклической стабильностью, низкой стоимостью и защитой окружающей среды. PDMS и ПЭТ являются в основном используемыми субстратами при реализации гибких суперконденсаторов. В случае пленки PDMS может создавать гибкие и прозрачные тонкопленочные ионисторы в часах с высокой циклической стабильностью после 10 000 циклов при изгибе.

Однослойные углеродные нанотрубки могут быть дополнительно включены в пленку PDMS для дальнейшего улучшения механической, электронной и термической стабильности. Аналогичным образом, проводящие материалы, такие как графен и УНТ, также покрываются пленкой ПЭТ для достижения, как высокой гибкости, так и электропроводности. Помимо ПДМС и ПЭТ другие полимерные материалы также привлекают растущие интересы и синтезируются различными методами. Например, локализованное импульсное лазерное облучение использовалось для быстрого преобразования первичной поверхности в электрическую проводящую пористую углеродную структуру с заданной графикой.

Природные полимеры, такие как нетканые материалы из древесных волокон и бумаги, также могут использоваться в качестве подложек, которые являются гибкими и легкими. УНТ наносится на бумагу для получения гибкого УНТ бумажного электрода. Из-за высокой гибкости бумажной подложки и хорошего распределения УНТ удельная емкость и плотность мощности и энергии меняется менее чем на 5% после изгиба на 100 циклов при радиусе изгиба 4,5 мм. Кроме того, из-за более высокой механической прочности и лучшей химической стабильности бактериальные наноцеллюлозные бумаги также используться для изготовления гибких суперконденсаторов, например для кассетного плеера walkman.

Параметры отвертки на ионисторе

Зарядное устройство:

  • 220 В переменного тока. 
  • Выходное напряжение 4,6 В постоянного тока 
  • Потребляемая мощность 40 Вт, Ток 2,4 А 
  • Время зарядки примерно 50 с.

Отвертка:

  • Напряжение 4,6 В 
  • Ионисторы 2,3 В, 300F (2 шт.) 
  • Крутящий момент 2,5 Нм 
  • Обороты 250 мин-1 
  • Вес 360 гр
  • Размеры 53 x 185 x 145 мм 
  • Цена около 2000 рублей.

Отвертка с суперконденсаторами может быть интересной идеей для небольших работ которые делаем редко, например: вкручиваем крышку, вешаем картину, меняем батарейки в игрушках или приборах. Зарядка обычной отвертки, для того чтобы просто вкрутить 4 винта и отложить снова на месяц — не имеет смысла.

   Форум по обсуждению материала ИОНИСТОР ВМЕСТО АККУМУЛЯТОРА

MINILED И MICROLED ДИСПЛЕИ

Что такое OLED, MiniLED и MicroLED телевизоры — краткий обзор и сравнение технологий.

В КАКОМ НАПРАВЛЕНИИ ТЕЧЕТ ТОК

В каком направлении течет ток — от плюса к минусу или наоборот? Занимательная теория сути электричества.

SMD ПРЕДОХРАНИТЕЛИ

Приводятся основные сведения о планарных предохранителях, включая их технические характеристики и применение.

ВОЗМОЖНОСТИ БЕСПРОВОДНОГО ПИТАНИЯ

Про использование технологии беспроводного питания различных устройств.

Параметры

Основные электрические характеристики ионисторов включают в себя:

  • емкость, для ее измерения используется единица Фарад (Ф);
  • внутреннее сопротивление (Ом);
  • максимальный ток разряда (А);
  • величина номинального напряжения (В)
  • параметры саморазряда и разряда, последний довольно важный параметр, поэтому приведем формулу, по которой можно произвести расчет времени разряда ионистора: где:

t – время разряда, измеряется в секундах (с);

С – емкость устройства (Ф);

V1, V2 – начальное и конечное значение диапазона напряжений, при которых проводилось тестирование;

I – величина тестового тока (А).

Использование

Транспортные средства

: неверное или отсутствующее изображение В этом разделе не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники. Эта отметка установлена 3 марта 2020 года

К:Википедия:Статьи без источников (тип: не указан)

Тяжелый и общественный транспорт

В настоящее время автобусы с питанием от ионисторов выпускаются фирмами Hyundai Motor и «Тролза».

Автобусы на ионисторах от Hyundai Motor представляют собой обыкновенные автобусы с электроприводом, питаемым от бортовых ионисторов. По задумке конструкторов из Hyundai Motor, такой автобус будет заряжаться на каждой второй или каждой третьей остановке, причём длительности остановки достаточно для подзарядки автобусных ионисторов. Hyundai Motor позиционирует свой автобус на ионисторах как экономичную альтернативу троллейбусу (нет необходимости прокладывать контактную сеть) или дизельному (и даже водородному) автобусу (электроэнергия пока дешевле дизельного или водородного топлива).

Автобусы на ионисторах от «Тролзы» технически представляют собой «бесштанговые троллейбусы». То есть конструктивно это троллейбус, но без штанг питания от контактной сети и, соответственно, с питанием электропривода от ионисторов.

Но особенно перспективны ионисторы в качестве средства реализации системы автономного хода для обычных троллейбусов. Троллейбус, оборудованный ионисторами, по маневренности приближается к автобусу. В частности, такой троллейбус может:

  • проходить отдельные короткие участки маршрута, не оборудованные контактной сетью (в том числе при необходимости двигаться в объезд, когда на каком-то участке маршрута движение по штатной трассе маршрута невозможно);
  • проходить места обрыва линии контактной сети;
  • возможность объезжать препятствия даже тогда, когда длина токоприёмных штанг не позволяет это сделать (водитель оборудованного ионисторами троллейбуса в этом случае просто опустит токоприёмные штанги и объедет препятствие, после чего вновь поднимет токоприёмные штанги и продолжит движение в штатном режиме);
  • отпадает надобность в развитии контактной сети в депо и на разворотных кольцах на конечных остановках — в депо и на разворотных кольцах оборудованные ионисторами троллейбусы маневрируют с опущенными токоприёмными штангами.

Таким образом, троллейбусная система, эксплуатируя оборудованные ионисторами троллейбусы, по гибкости приближается к обычной автобусной.

Автомобильный

Ё-мобиль — проект автомобиля, разрабатывавшийся в Российской Федерации, использовал суперконденсатор как основное средство для накопления электрической энергии. Сами эти суперконденсаторы пока не выпускаются серийно и разрабатывались параллельно с автомобилем.

Существуют проекты, объединяющие суперконденсатор и химический аккумулятор в едином блоке, что взаимно компенсирует недостатки тех и других. В результате получается накопитель с большим сроком службы, меньшей стоимостью и большим запасом энергии, чем при использовании обычных аккумуляторов.

Автогонки

Система KERS, применяющаяся в «Формуле-1», использует именно ионисторы.

Бытовая электроника

Применяются для основного и резервного питания в фотовспышках, фонарях, карманных плеерах и автоматических коммунальных счётчиках — везде, где требуется быстро зарядить устройство. Лазерный детектор рака молочной железы на ионисторах заряжается за 2,5 минуты и работает 1 минуту.

В 2007 году выпустили шуруповёрт, в котором ионисторы общей ёмкостью 55 фарад заряжаются 1,5 минуты. Заряда хватает на 22 шурупа.К:Википедия:Статьи без источников (тип: не указан)[источник не указан 1892 дня

В магазинах автоаксессуаров продаются ионисторы ёмкостью порядка 1Ф, предназначенные для питания автомагнитол (и аппаратуры, питаемой от разъёма прикуривателя) при выключенном зажигании и в период старта двигателя (на многих автомобилях на время работы стартёра отключаются все остальные потребители), а также для сглаживания скачков напряжения при пиковых нагрузках, например, работы мощных динамиков.

Сравнения

С появлением ионисторов стало возможным использовать конденсаторы в электрических цепях не только как преобразующий элемент, но и как источник напряжения . Об этом говорит сайт https://intellect.icu . Широко применяются в качестве замены батареек для хранения информации о параметрах изделия при отсутствии внешнего питания. Такие элементы имеют как несколько преимуществ, так и недостатков над обычными химическими источниками тока — гальваническими элементами и аккумуляторами:

Недостатки

  • Удельная энергия симметричных ионисторов меньше, чем у аккумуляторов (5-12 Вт·ч/кг при 200 Вт·ч/кг для литий-ионных аккумуляторов).
  • Напряжение зависит от заряженности.
  • Возможность выгорания внутренних контактов при коротком замыкании.
  • Низкое рабочее напряжение (несколько вольт).
  • Значительно больший, по сравнению с аккумуляторами, саморазряд: порядка 1 мкА у ионистора 2 Ф × 2,5 В .
  • Высокая стоимость изделия. До сих пор ионистор стоит существенно дороже обычных конденсаторов и аккумуляторов

  • Низкое напряжение изделия, на которое рассчитан ионистор. Особенность суперконденсатора такова, что они рассчитаны на довольно низкое напряжение, величина которого зависит от вида применяемого электролита. Для увеличения напряжения ионисторы соединяют последовательно. Но помимо такого соединения необходимо каждый суперконденсатор шунтировать резистором по причине выравнивания напряжение на отдельном ионисторе.

  • Если превысить рабочую температуру в 70 градусов по Цельсию, то высока вероятность, что изделие просто разрушится.

  • Суперконденсатор – полярный элемент, поэтому при подключении необходимо соблюдать полярность.

Преимущества

  • Высокие скорости зарядки и разрядки.
  • Простота зарядного устройства Во время зарядки нет необходимости использовать сложные зарядные устройства.
  • Большое количество циклов заряд-разряд (Малая деградация) даже после сотен тысяч циклов заряда/разряда. Проводились исследования по определению максимального числа циклов заряд-разряд. После 100 000 циклов не наблюдалось ухудшения характеристик.
  • Ионистор обладает длительным сроком службы.
  • Малый вес по сравнению с электролитическими конденсаторами подобной емкости.
  • Низкая токсичность материалов ( кроме органических электролитов).
  • Высокая эффективность
  • Неполярность (хотя на ионисторах и указаны «+» и «−», это делается для обозначения полярности остаточного напряжения после его зарядки на заводе-изготовителе).
  • Нет необходимости обслуживать изделие.
  • Незначительный вес и небольшие размеры

Применение суперконденсаторов

Системы аварийного освещения являются тем местом, где использование суперконденсаторов вместо аккумуляторов дает ощутимый выигрыш. В самом деле, именно для этого применения характерна неравномерность разрядки. Кроме этого, желательно, чтобы зарядка аварийного светильника происходила быстро, и чтобы используемый в нем резервный источник питания имел большую надежность. Источник резервного питания на основе суперконденсатора можно встроить непосредственно в светодиодную лампу T8. Такие лампы уже выпускаются рядом китайских фирм.

Грунтовый светодиодный светильник с питанием от солнечных батарей, накопление энергии в котором осуществляется в суперконденсаторе

Как уже отмечалось, развитие суперконденсаторов во многом связано с интересом к альтернативным источникам энергии. Но практическое применение пока ограничено светодиодными светильниками, получающими энергию от солнца.

Активно развивается такое направление как использование суперконденсаторов для запуска электрооборудования.

Суперконденсаторы способны дать большое количество энергии в короткий интервал времени. Запитывая электрооборудование в момент пуска от суперконденсатора, можно уменьшить пиковые нагрузки на электросеть и в конечном счете уменьшить запас на пусковые токи, добившись огромной экономии средств.

Соединив несколько суперконденсаторов в батарею, мы можем достичь емкости, сопоставимой с аккумуляторами, используемыми в электромобилях. Но весить эта батарея будет в несколько раз больше аккумулятора, что для транспортных средств неприемлемо. Решить проблему можно, используя суперконденсаторы на основе графена, но они пока существуют только в качестве опытных образцов. Тем не менее, перспективный вариант знаменитого «Ё-мобиля», работающий только от электричества, в качестве источника питания будет использовать суперконденсаторы нового поколения, разработка которых ведется российскими учеными.

Суперконденсаторы также дадут выигрыш при замене аккумуляторов в обычных машинах, работающих на бензине или дизельном топливе — их использование в таких транспортных средствах уже является реальностью.

Пока же самым удачным из реализованных проектов внедрения суперконденсаторов можно считать новые троллейбусы российского производства, вышедшие недавно на улицы Москвы. При прекращении подачи напряжения в контактную сеть или же при «слетании» токосъемников троллейбус может проехать на небольшой (порядка 15 км/ч) скорости несколько сотен метров в место, где он не будет мешать движению на дороге. Источником энергии при таких маневрах для него является батарея суперконденсаторов.

В общем, пока суперконденсаторы могут вытеснить аккумуляторы только в отдельных «нишах». Но технологии бурно развиваются, что позволяет ожидать, что уже в ближайшем будущем область применения суперконденсаторов значительно расширится.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Электрика
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: