Параллельное соединение резисторов. калькулятор для расчета

Как понять закон Ома?

Чтобы интуитивно понять закон Ома, обратимся к аналогии представления тока в виде жидкости. Именно так думал Георг Ом, когда проводил опыты, благодаря которым был открыт закон, названный его именем.

Представим, что ток – это не движение частиц-носителей заряда в проводнике, а движение потока воды в трубе.  Сначала воду насосом поднимают на водокачку, а оттуда, под действием потенциальной энергии, она стремиться вниз и течет по трубе. Причем, чем выше насос закачает воду, тем быстрее она потечет в трубе.

Отсюда следует вывод, что скорость потока воды (сила тока в проводе) будет тем больше, чем больше потенциальная энергия воды (разность потенциалов)

Теперь обратимся к сопротивлению. Гидравлическое сопротивление – это сопротивление трубы, обусловленное ее диаметром и шероховатостью стенок. Логично предположить, что чем больше диаметр, тем меньше сопротивление трубы, и тем большее количество воды (больший ток) протечет через ее сечение.

Такую аналогию можно проводить лишь для принципиального понимания закона Ома, так как его первозданный вид – на самом деле довольно грубое приближение, которое, тем не менее, находит отличное применение на практике.

В действительности, сопротивление вещества обусловлено колебанием атомов кристаллической решетки, а ток – движением свободных носителей заряда. В металлах свободными носителями являются электроны, сорвавшиеся с атомных орбит.

Ток в проводнике

В данной статье мы постарались дать простое объяснение закона Ома. Знание этих на первый взгляд простых вещей может сослужить Вам неплохую службу на экзамене. Конечно, мы привели его простейшую формулировку закона Ома и не будем сейчас лезть в дебри высшей физики, разбираясь с активным и реактивным сопротивлениями и прочими тонкостями.

Если у Вас возникнет такая необходимость, Вам с удовольствием помогут сотрудники нашего студенческого сервиса. А напоследок предлагаем Вам посмотреть интересное видео про закон Ома. Это действительно познавательно!

Выходное напряжение

При рассмотрении упрощённой схемы блока видно, что у него имеется выходное напряжение. Оно появляется на контактах, указанных на изображении справа.

На рисунке показан идеальный источник тока, который, как предполагается, не имеет внутреннего сопротивления. Это означает, что может быть создан сколько угодно большой ток. Имеющийся на схеме резистор нарушает определенную идеальность, ограничивая величину тока при коротком замыкании.

Измерение выходного тока может быть выполнено следующим образом. Напряжение U является известной величиной. При коротком замыкании может быть измерен проходящий по контактам ток. Выходное сопротивление R(вых) определяется по закону Ома. Для его вычисления необходимо напряжение разделить на ток.

Однако этот способ неудобен, так как большой ток нарушает условия функционирования схемы и может привести к поломкам. Поэтому на практике между клеммами ставят дополнительный резистор с известной величиной сопротивления R и только после этого измеряют значение силы тока I и напряжения U2. Предварительно следует определить разность потенциалов U1 с помощью вольтметра. Исходя из закона Ома, получают следующую формулу:

R(вых) = ( U2 – U1 ) / ( U2 / R ).

Классы работы усилителя

Прежде чем говорить о режимах работы усилителя необходимо сказать несколько слов о транзисторах, а точнее о проходной характеристике транзистора. Проходная характеристика – это зависимость выходного тока от напряжения или тока на входе.

Проходная характеристика транзисторов

На данной характеристике хорошо видно, что при напряжении коллектор-эмиттер, большем порогового напряжения, зависимость имеет экспоненциальный характер, а при напряжении, меньшем порогового, отклоняется от экспоненциальной зависимости. Таким образом режим работы усилителя определяется положением рабочей точки на проходной характеристики усилительного транзистора.

При работе в классе А

рабочая точка Т лежит примерно в средней части проходной характеристики транзистора и выходной ток транзистора (коллекторный ток IC) протекает в течении всего периода гармонического колебания. В этом случае транзистор работает без отсечки тока (угол отсечки θ = 180°). Другими словами транзистор в усилителе постоянно находится в активном режиме, а в режим отсечки никогда не переходит. При работе в данном режиме усилители характеризуются наибольшей линейностью, но в тоже время значение КПД никогда не превышает 47,5%, а в большинстве случаев едва достигает нескольких десятков процентов.


Работа транзистора в режиме усиления класса A.При работе в классе В

в идеальном случае рабочая точка Т находится на пересечении проходной характеристики с осью абсцисс и коллекторный ток (IC) в отсутствие сигнала равен нулю. Транзистор в таком усилителе работает с отсечкой тока (угол отсечки θ = 90°). Таким образом, транзистор усиливает только одну полуволну гармонического колебания и переходит в режим отсечки сигнала. Теоретически значение КПД в данном режиме имеет максимальное значение 78,5%, но практически никогда не достигает этого значения. В связи с тем, что транзистор при работе в данном режиме усилителя работает также в линейном режиме и режиме отсечки тока, усиленный сигнал имеет несколько большие искажения, чем при работе усилителя в режиме А, поэтому чистый режим В применяют редко. Значительно чаще применяют усилители, в которых транзисторы работают в режиме АВ.


Работа транзистора в режиме усиления класса B.Режим усилителя класса АВ

. Как ясно из названия в данном случае рабочая точка лежит на проходной характеристике несколько выше, чем при режиме В и коллекторный ток (IC) имеет небольшое значение, практически, чтобы только выйти из режима отсечки. Транзистор в таком режиме усиления работает с отсечкой тока (угол отсечки 180° > θ > 90°). В данном случае происходит усиление одной полуволны и некоторой части другой полуволны, что при наличии двух усилительных приборов работающих в режиме АВ и усиливающих разные полуволны получить полный усиленный сигнал. Режим АВ характеризуется лучшей линейностью, чем режим В и большим значением КПД, чем режим А.


Работа транзистора в режиме усиления класса AB. Существуют так же и другие классы работы усилителей, но они имеют значительные недостатки или сложны в управлении. Например, в классе С транзистор работает с отсечкой тока (угол отсечки θ < 90°), что приводит к ещё большим искажениям усиленного сигнала, чем в классе В, но в тоже время КПД больше, чем при классе В. Класс работы D практически представляет собой ключевой режим работы транзистора, при котором усилительный транзистор большую часть времени находится либо в режиме отсечки, либо режиме насыщения.

Онлайн-расчёт на калькуляторе

Создано множество интернет-страниц, позволяющих найти сопротивление параллельных резисторов за несколько секунд, используя в своих вычислительных алгоритмах формулы для расчёта параллельного соединения. Такие калькуляторы достаточно полезны радиолюбителям-конструкторам или специалистам РЭА при возникновении затруднения с выбором нужного номинала резистора для замены его в цепи электронного устройства.

Внешний вид онлайн-приложений может отличаться друг от друга, а вот принцип работы одинаков. Немаловажным является в работе программ тот факт, что алгоритмы их вычисления используют разную точность в округлении результата, поэтому ответ в некоторых программах при сравнении может немного отличаться.

Само приложение обычно представляет собой ячейки, в которые вносится величина значений резисторов в международной системе измерений. После того как все поля заполнены, нажимается кнопка «Рассчитать» и получается ответ в ячейке напротив. Ответ рассчитывается в Омах. В некоторых приложениях функциональность может быть расширена, это такие возможности, как автоматический перевод значений резисторов в систему СИ, отображение наиближайшего стандартного значения сопротивления из номинального ряда, близкого к полученному ответу.

Полезной функцией может быть и обратный переход, когда вводится эквивалентное сопротивление, а в ответе выдаётся комбинация номиналов проводника для параллельного включения.

https://youtube.com/watch?v=jJX6IsRhnhs

Закон Ома для полной цепи

Открытый Г

Омом закон для участка цени в общем случае справедлив и для полной цепи, если принимать во внимание как внешнюю, так и внутреннюю части цепи. Математическую запись закона Ома для этого случая можно получить на основании закона сохранения энергии, универсального для всех процессов в природе

Пусть электрическая цепь состоит из источника тока, имеющего ЭДС и внутреннее сопротивление г, и проводника сопротивлением R (рис. 1.51).

Pиc. 151. Замкнутая электрическая цепь

Согласно закону сохранения энергии работа сторонних сил равна сумме работ электрического тока во внешней и внутренней частях цепи:

По определению

Отсюда

Если учесть, что по закону Ома для участка цепи U =IR, то получим формулу этого закона для полной цепи:

Таким образом, сила тока в полной цепи пропорциональна электроднижущей силе источника и обратно пропорциональна полному сопротивлению цепи.

Сила тока в полной цепи пропорциональна электродвижущей силе источника и обратно пропорциональна полному сопротивлению цепи:

Пользуясь законом Ома для полной цепи, можно рассчитать два экстремальных случая н электрической цепи — короткое замыкание и разомкнутую цепь. Если сопротивление внешней цепи стремится к нулю (короткое замыкание), то сила тока в цепи

Это будет максимальное значение силы тока для данной цепи.
Если цепь разорвана (R→∞ ), то ток в цени прекращается при любых значениях ЭДС и внутреннего сопротивления. В последнем случае напряжение нм полюсах источника тока будет равно электродвижущей силе. Поэтому иногда дают упрощенное определение ЭДС: это величина, равная напряжению на клеммах источника при разомкнутой цепи.

Источники тока могут соединяться в батареи. Существуют несколько способов соединения источников тока.

Последовательным называют соединение, при котором соединяются друг с другом разноименные полюса источников: положительный предыдущего с отрицательным следующего и т. д. (рис. 1.52). Чаще всего соединяют источники с одинаковыми характеристиками, поэтому при последовательном соединении N источников ЭДС батареи будет в N раз больше, чем ЭДС одного источника:

Внутреннее сопротивление такой батареи будет также в N раз больше:

Рис. 152. Схема последовательного соединения источников тока

Для последовательного соединения источников тока закон Ома для полной цепи будет записываться:

Последовательное соединение источников τoιca удобно в том случае, когда сопротивление потребителя значительно больше внутреннего сопротивления одного источника тока.
Параллельным является соединение, при котором все одноименные полюса соединяется в один узел (рис. 1.53).

Pиc. 153. Схема параллельного соединения источников тока

Параллельное соединение применяют тогда, когда в цепи необходимо получить большое значение силы тока при небольшом напряжении.

Электродвижущая сила батареи параллельно соединенных одинаковых источников равна ЭДС одного источника:

Формула закона Ома для параллельного соединения источников имеет вид:

Параллельное соединения удобно тогда» когда сопротивление внешней части цепи значительно меньше внутреннего сопротивления одного источника.

При смешанном соединении батареи источников тока (параллельно или последовательно) в свою очередь соединяют последовательно или параллельно (рис. 1.54).

Pиc. 1.54. Смешанное соединение источников тoκa

Рекомендую подробно изучить предметы:
  1. Физика
  2. Атомная физика
  3. Ядерная физика
  4. Квантовая физика
  5. Молекулярная физика
Ещё лекции с примерами решения и объяснением:
  • Закон Ома для цепи переменного тока с последовательным соединением сопротивлений
  • Сила и закон Ампера
  • Закон взаимодействия прямолинейных параллельных проводников с током
  • Сила Лоренца
  • Звуковые волны в физике
  • Электрическое поле в физике
  • Работа по перемещению заряда в электростатическом поле
  • Закон Ома для однородного участка электрической цепи

Метод — эквивалентное сопротивление

Метод эквивалентных сопротивлений применяется для расчета таких электрических цепей, в которых имеются пассивные элементы, включенные между собой последовательно, параллельно или по смешанной схеме.

Для каких сетей применяется метод эквивалентного сопротивления.

Например, для использования метода эквивалентных сопротивлений при большом числе эквивалентируемых линий их можно находить не по результатам расчетов потокораспределения в каждой конкретной сети, как это было показано в параграфе 9.7, а на основании регрессионных зависимостей.

Как определяются потери электроэнергии методом эквивалентного сопротивления.

К расчету электрической цепи методом наложения.

Каждая частная схема рассчитывается отдельно, например, методом эквивалентных сопротивлений. Ток в данной ветви исходной схемы определяется алгебраической суммой частных токов этой ветви.

Ориентировочные величины Н наносим на схему над стояками. С помощью метода эквивалентных сопротивлений этот расчет может быть произведен несколько быстрее.

Схема цепи со смешанным соединением сопротивлений.

Пусть все сопротивления и напряжение на входе этой схемы заданы и требуется определить токи ее отдельных участков. Для расчета воспользуемся методом эквивалентных сопротивлений, по которому отдельные участки схемы упрощают и постепенным преобразованием их приводят схему к одному общему ( входному) сопротивлению. Для упрощения схемы отдельные группы последовательно или параллельно соединенных сопротивлений заменяют одним эквивалентным сопротивлением.

К методу эквивалентных сопротивлений.

В более сложных схемах методом эквивалентных сопротивлений достигается упрощение, которое значительно облегчает расчет.

Схема линий тока при фильтрации газа к горизонтальному.

Во втором способе истинная область фильтрации заменяется областью с гиперболическим характером изменения толщины пласта h ( R) в интервале Rc h ( R) RK. В работе для определения производительности горизонтальных скважин использован метод эквивалентных сопротивлений, который заменяет пространственную задачу фильтрации газа плоской. Ниже приведены конечные расчетные формулы, полученные с использованием метода эквивалентных сопротивлений для определения производительности горизонтальных газовых скважин.

Замена сопро — 2 — 3. Замена.| Разветвленная цепь с одним источником питания.

На схеме рис. 2 — 1 приведен пример электрической цепи с одним источником питания и смешанным соединением сопротивлений. Распределение токов в ней при заданных напряжении и сопротивлениях участков можно определить методом эквивалентных сопротивлений. Для этого отдельные участки схемы упрощают и постепенным преобразованием их приводят к одному общему эквивалентному сопротивлению.

Импеданс

ИМПЕДАНС (от латинского impedio — препятствовать) (комплексное сопротивление), аналог электрического сопротивления для гармонических процессов. Различают импеданс элемента цепи переменного тока, волновой и полевой импеданс Понятие импеданса введено английскими физиками О. Лоджем и О. Хевисайдом, полевого импеданса — С. А. Щелкуновым (1938).

В теории электрических цепей для стационарных гармонических процессов электрическое напряжение u и ток j через какой-либо элемент записывают в комплексном виде: u= Uexρ(iωt), j = Iexp(iωt), где t — время, i — мнимая единица, ω — круговая частота. Импедансом Z пассивного элемента (омического сопротивления R, катушки индуктивности L или конденсатора ёмкости С) называют отношение комплексных амплитуд напряжения U и тока I: Z(ω) = U/I. Вещественную часть импеданса Re(Z) называют активным сопротивлением, мнимую часть — реактивным сопротивлением или реактансом. Модуль импеданса |Z| называется полным сопротивлением. В СИ импеданс измеряется в омах. Иногда используют обратную импедансу величину Z-1, называемую адмитансом. Импеданс омического сопротивления равен ZR = R, катушки индуктивности — ZL=iωL, конденсатора ёмкости — ZC = 1/iωС. Правила расчёта импеданса пассивного двухполюсника, состоящего из произвольной комбинации пассивных элементов, те же, что для двухполюсника, состоящего из обычных сопротивлений: при последовательном соединении элементов складываются их импеданс, а при параллельном — их адмитансы.

Активное сопротивление связано с потерями энергии в элементе: усреднённая за период мощность потерь Р, поглощаемая в элементе (двухполюснике), равна Р = Re(Z)|I|2/2. Реактивное сопротивление характеризует энергию, накапливаемую в элементе (двухполюснике) и отдаваемую обратно, которая пульсирует с частотой 2ω и в среднем за период равна нулю.

Волновым импедансом (волновым сопротивлением) ZB длинной линии называют отношение амплитуды гармонической волны напряжения к амплитуде соответствующей волны тока. Для длинной линии без потерь волновой импеданс равен ZB = √Lп/Cп, где Lп и Сп — погонные индуктивность и ёмкость.

Полевой импеданс (волновое сопротивление среды) Zп определяется для электрического и магнитного полей плоской монохроматической электромагнитной волны в среде как отношение амплитуд электрической и магнитной компонент ZB = Е/Н = √μμ0/εε0 (в СИ). Здесь μ и ε — магнитная и диэлектрическая проницаемости среды, μ0 и ε0 — магнитная и диэлектрическая проницаемости вакуума. В вакууме полевой импеданс равен Zп = 120π Ом (в СИ), его также называют характеристическим импедансом вакуума.

Лит.: Будурис Ж., Шеневье П. Цепи сверхвысоких частот. М., 1979; Ландау Л. Д., Лифшиц Е. М. Электродинамика сплошных сред. 4-е изд. М., 2005.

С. П. Вятчанин.

Закон Ома для участка цепи

Для описания электрической цепи не содержащего ЭДС можно использовать закон Ома для участка цепи. Это наиболее простая форма записи. Он выглядит так:

I=U/R

Где I – это ток, измеряется в Амперах, U – напряжение в вольтах, R – сопротивление в Омах.

Такая формула нам говорит, что ток прямопропорционален напряжению и обратнопропорционален сопротивлению – это точная формулировка Закона Ома. Физический смысл этой формулы – это описать зависимость тока через участок цепи при известном его сопротивлении и напряжении.

Внимание! Эта формула справедлива для постоянного тока, для переменного тока она имеет небольшие отличия, к этому вернемся позже. Кроме соотношения электрических величин данная форма нам говорит о том, что график зависимости тока от напряжения в сопротивлении линеен и выполняется уравнение функции:

Кроме соотношения электрических величин данная форма нам говорит о том, что график зависимости тока от напряжения в сопротивлении линеен и выполняется уравнение функции:

f(x) = ky или f(u) = IR или f(u)=(1/R)*I

Закон Ома для участка цепи применяют для расчетов сопротивления резистора на участке схемы или для определения тока через него при известном напряжении и сопротивлении. Например, у нас есть резистор R сопротивлением в 6 Ом, к его выводам приложено напряжение 12 В. Необходимо узнать, какой ток будет протекать через него. Рассчитаем:

I=12 В/6 Ом=2 А

Идеальный проводник не имеет сопротивления, однако из-за структуры молекул вещества, из которого он состоит, любое проводящее тело обладает сопротивлением. Например, это стало причиной перехода с алюминиевых проводов на медные в домашних электросетях. Удельное сопротивление меди (Ом на 1 метр длины) меньше чем алюминия. Соответственно медные провода меньше греются, выдерживают большие токи, значит можно использовать провод меньшего сечения.

Еще один пример — спирали нагревательных приборов и резисторов обладают большим удельным сопротивлением, т.к. изготавливаются из разных высокоомных металлов, типа нихрома, кантала и пр. Когда носители заряда движутся через проводник, они сталкиваются с частицами в кристаллической решетке, вследствие этого выделяется энергия в виде тепла и проводник нагревается. Чем больше ток – тем больше столкновений – тем больше нагрев.

Чтобы снизить нагрев проводник нужно либо укоротить, либо увеличить его толщину (площадь поперечного сечения). Эту информацию можно записать в виде формулы:

Rпровод=ρ(L/S)

Где ρ – удельное сопротивление в Ом*мм2/м, L – длина в м, S – площадь поперечного сечения.

Когда закон Ома встречается и какие материалы соответствуют и не соответствуют закону Ома

Закон Ома является экспериментальным законом, выполненным для некоторых материалов (например, металлов) для фиксированных условий тока, в частности температуры проводника.

Материалы, относящиеся к закону Ома, называются омическими направляющими или линейными проводниками. Примерами проводников, которые соответствуют закону Ома, являются металлы (например, медь, золото, железо), некоторые керамические изделия и электролиты.

Материалы, не относящиеся к закону Ома, в которых сопротивление является функцией интенсивности протекающего через них тока, называются нелинейными проводниками. Примерами руководств, не относящихся к закону Ома, являются полупроводники и газы.

Закон Ома не выполняется, когда изменяются параметры проводника, особенно температура.

Физические формулы и примеры вычислений

Формулы для эквивалентных сопротивлений цепи, состоящей из пары резисторов R1 и R2, можно выделить в определённый ряд:

  • параллельное присоединение определяют по формуле Rэкв. = (R1*R2)/R1+R2;
  • последовательное включение вычисляют, определяя его сумму Rэкв. = R1+R2.

У смешанного соединения резистивных элементов нет конкретной формулы. Чтобы не запутаться при длительных преобразованиях, здесь допустимо воспользоваться специальной программой из интернета. Это сервис «онлайн-калькулятор». Он поможет разобраться со сложными схемами соединения, будь то треугольник, квадрат, пятиугольник или иная схематичная фигура, образованная резистивными элементами.

Понять, как работают все формулы и методы, можно на конкретной задаче. На представленном первом рисунке – смешанная электрическая схема. Она включает в себя 10 резисторов. Элементы представлены в следующих номиналах:

  • R1 = 1 Ом;
  • R2 = 2 Ом;
  • R3 = 3 Ом;
  • R4 = 6 Ом;
  • R5 = 9 Ом;
  • R6 = 18 Ом;
  • R7 = 2Ом;
  • R8 = 2Ом;
  • R9 = 8 Ом;
  • R10 = 4 Ом.

Напряжение, поданное на схему:

U = 24 В.

Требуется рассчитать токи на всех резистивных элементах.

Исходная цепь

Для расчётов применяется закон Ома:

I = U/R, подставляя вместо R эквивалентное сопротивление.

Внимание! Для решения этой задачи сначала вычисляют общее (эквивалентное) R, после чего уже рассчитывают ток в цепи и напряжение на каждом резистивном компоненте. Вычисляя Rэкв., разделяют заданную цепь на звенья, вмещающие в себя параллельные и последовательные включения

Делают расчёты для каждого такого звена, после – всей цепи целиком

Вычисляя Rэкв., разделяют заданную цепь на звенья, вмещающие в себя параллельные и последовательные включения. Делают расчёты для каждого такого звена, после – всей цепи целиком.

На рисунке выше изображено смешанное соединение сопротивлений. Его можно разбить на три участка:

  • АВ – участок, имеющий две параллельных ветви;
  • ВС – отрезок, вмещающий в себя последовательное сопряжение;
  • CD – отрезок схемы с расположением трёх параллельных цепочек.

Сопротивления R2 и R3, образующие нижнюю ветку отрезка АВ, соединены последовательно, что учитывается при расчёте.

Последовательно соединённые резисторы R2 и R3

Если посмотреть на участок СD, то можно отметить смешанное включение резистивных элементов.

Смешанное включение на участке CD

Начало расчётов состоит в определении эквивалентных сопротивлений для этих смешанных фрагментов. Выполняют это в следующем порядке:

  • Rэкв.2,3 = R2+R3=2 + 3 = 5 Ом;
  • Rэкв.7,8 = (R7*R8)/R7 + R8 = (2*2)/2 + 2 = 1 Ом;
  • Rэкв.7,8,9 = Rэкв.7,8 + R9 = 1 + 8 = 9 Ом.

Зная значения полученных эквивалентов, упрощают первоначальную схему. Она будет иметь вид, представленный на рисунке ниже.

Результат первого свёртывания

Далее можно уже определить Rэкв. для участков AB, BC, CD, по формулам:

  • Rэкв.AB = (R1*Rэкв 2,3)/R1 + Rэкв 2,3 = (1*5)/1 + 5 = 0,83 Ом;
  • Rэкв.BC = R4 + R5 = 6 + 9 = 15 Ом;
  • 1/Rэкв.CD = 1/R6 + 1/Rэкв.7,8,9 + 1/R10 = 1/18 + 1/9 + 1/4 = 0,05 + 0,11 + 0,25 = 0,41 Ом.

В результате выполненных вычислений получается эквивалентная схема, в которую входят три Rэкв. сопротивления. Она имеет вид, показанный на рисунке ниже.

Результат последующего свёртывания

Теперь можно определить эквивалентное сопротивление всей первоначальной схемы, сложив эквивалентные значения всех трёх участков:

Rэкв. = Rэкв.AB + Rэкв.BC + Rэкв.CD = 0,83 + 15 + 0,41 = 56,83 Ом.

Далее, используя закон Ома, находят ток в последнем последовательном участке:

I = U/ Rэкв. = 24/56,83 = 0,42 А.

Зная силу тока, можно найти, какое падение напряжения на рассмотренных участках AB, BC, CD. Это выполняется следующим образом:

  • UAB = I* Rэкв.AB= 0,42*0,83 = 0,35 В;
  • UBC = I* Rэкв.BC= 0,42*15 = 6,3В;
  • UCD = I* Rэкв.CD = 0,42*0,41 = 0,17 В.

Следующим шагом станет определение токов на параллельных отрезках AB и CD

  • I1 = UAB/R1 = 0,35/1 = 0,35 А;
  • I2 = UAB/Rэкв.2,3 = 0,35/5 = 0,07 А;
  • I3 = UCD/R6 = 0,17/18 = 0,009 А;
  • I6 = UCD/Rэкв.7,8,9= 0,17/9 = 0,02 А;
  • I7 = UCD/R10 = 0,17/4 = 0,04 А.

Далее, чтобы найти значения токов, проходящих через R7 и R8, нужно рассчитать напряжение на этих двух резисторах. Предварительно находят падение напряжения на R9.

U9 = R9*I6 = 8*0,02 = 0,16 В.

Теперь напряжение, падающее на Rэкв.7,8, будет разностью между U CD и U9.

U7,8 = UCD – U9= 0,17 – 0,16 = 1 В.

После этого можно уже узнать значение токов, движущихся по резисторам R7 и R8, используя формулы:

  • I4 = U7,8/R7 = 1/2 = 0,5 A;
  • I5 = U7,8/R8 = 1/2 = 0,5 A.

Рассчитывая схемы и решая задачи по нахождению значений электрических параметров, необходимо использовать эквивалентные сопротивления. С помощью такой замены сложные построения превращаются в элементарные цепи, которые сводятся к параллельным и последовательным соединениям резистивных элементов.

Когда «сопротивление бесполезно»

Электрический ток — умный и хитрый парень. Если у него есть возможность обойти резистор и пойти по идеальному проводнику без сопротивления, он это сделает. При этом с резисторами просто разных номиналов это не сработает: он не пойдет просто через меньшее сопротивление, а распределится согласно закону Ома — больше тока пойдет туда, где сопротивление меньше, и наоборот.

А вот на рисунке ниже сопротивление цепи равно нулю, потому что ток через резистор не пойдет.

Ток идет по пути наименьшего сопротивления.

Теперь давайте посмотрим на закон Ома для участка цепи еще раз.

Закон Ома для участка цепи

I = U/R

I — сила тока

U — напряжение

R — сопротивление

Подставим сопротивление, равное 0. Получается, что знаменатель равен нулю, а на математике говорят, что на ноль делить нельзя. Но мы вам раскроем страшную тайну, только не говорите математикам: на ноль делить можно. Если совсем упрощать такое сложное вычисление (а именно потому что оно сложное, мы всегда говорим, что его нельзя производить), то получится бесконечность.

То есть:

I = U/0 = ∞

Такой случай называют коротким замыканием — когда величина силы тока настолько велика, что можно устремить ее к бесконечности. В таких ситуациях мы видим искру, бурю, безумие — и все ломается.

Это происходит, потому что две точки цепи имеют между собой напряжение (то есть между ними есть разница). Это как если вдоль реки неожиданно появляется водопад. Из-за этой разницы возникает искра, которую можно избежать, поставив в цепь резистор.

Именно во избежание коротких замыканий нужно дополнительное сопротивление в цепи.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Электрика
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: