Что такое электролитическое заземление?

Одноконтурная и двухконтурная схема

Независимо от способа организации электроснабжения на промышленном или гражданском объекте, установка заземлителей и монтаж защитного заземления осуществляется либо по одноконтурной, либо по 2-х контурной схеме.

В первом случае заземляющий контур прокладывается только внутри строения, что позволяет подключать к нему соединительные шины, проложенные от металлических частей действующих установок и другого электротехнического оборудования.

При использовании двухконтурной системы заземления к внутренней шинной обвязке добавляется ещё один контур, монтаж которого происходит снаружи объекта.

Как правило, он выполняется в виде распределённого по периметру набора одиночных заземлителей (вбитых в землю металлических прутьев или отрезков арматуры, соединённых между собой стальной шиной).

Образующаяся при этом замкнутая система позволяет увеличить площадь соприкосновения с грунтом и обеспечивает лучшие условия для стекания тока в почву.

Наружными контурами, дополняющими внутреннюю распределительную шину, обычно оснащаются трансформаторные подстанции, где требования к качеству заземления особенно высоки.

В соответствии с требованиями нормативов электромонтажные работы на подстанциях проводятся с тем расчётом, чтобы элементы наружной обвязки отстояли от края строения более чем на один метр.

Металлические штыри или отрезки арматуры вбиваются в землю на глубину не менее 0,7 метра. При этом соединяющая их стальная полоса должна располагаться строго вертикально (то есть ставиться на «ребро»).

Принцип работы

Устройство работает на основе протекания химических реакций, которые увеличивают электрическую проводимость почвы. Электролитическое заземление условно работает по следующему механизму:

  • Смесь, которую заливают в полный электрод, впитывает в себя из окружающей среды воду через специальные отверстия в устройстве.
  • Происходит реакция воды с солью и в результате образовывается электролит, который просачивается в грунт. Благодаря этой смеси почва становится с большей электропроводностью и менее склонной к промерзанию.

Эта реакция происходит в не зависимости от температуры окружающей среды и грунта.

История создания

До появления современных анодных заземлителей применялись «жертвенные электроды» старого типа или установки катодной защиты. Охраняемый объект играл роль катода, а заземление — анода. В результате металлические конструкции служили дольше, но анодный заземлитель быстро повреждался и требовал замены.

Ранее такие аноды располагались горизонтально, но в условиях города такой подход трудно реализовать.

Решение проблемы придумал Роберт Кун, предложивший ставить заземлитель на большую глубину и вертикально. При первой проверке в 1952 году удалось установить анод на 90 метров.

Со временем специалисты пришли ко мнению, что такой способ защиты металлических конструкций лучше подходит для условий города.

Что такое электролитическое заземление?

Электролитическое заземление – это готовое приспособление, которое используется в каменистых, песчаных и вечномерзлых грунтах. В конструкцию комплекта входит стальной электрод, колодец для обслуживания, заполнитель, зажим и гидроизоляционная лента. Где применяется электролитическое заземление? Область применения устройства различная. Как правило, его применяют в тех местах, где нет возможности установить заземляющий электрод на глубину от одного метра. А также на грунтах, которые обладают большим удельным сопротивлением.

Из чего состоит система?

Главным элементом в устройстве считается полый электрод, который имеет форму трубы в форме L (на рисунке он помечен цифрой 1).

Ее устанавливают в грунт на глубину до одного метра (зона протайки грунта) и заполняют специальной смесью, которая включает в себя минеральные соли. 2 – это специальный колодец, который облегчает работу. 3 – зажим, с помощью которого соединяются электрод и заземляющий проводник. 4 – гидроизоляционная лента, которая защищает от попадания влажности на заземление и препятствует возникновению коррозии.

На фото наглядно показано, как выглядит заземлитель:

Как измеряется сопротивление

Прибор, снимающий показания сопротивления, прост в эксплуатации. Чтобы получить необходимые показания, необходимо:

  1. Один конец прибора при помощи зажима прикрепить к месту соединения проводника и зажима.
  2. Второй конец прикрепить к техническому штырю (вбитому в землю куску арматуры).
  3. Далее смотреть на показания измерителя.

Некоторые особенности монтажа

Несмотря на то, что электролит одинаково эффективно вступает в реакцию при любых температурах, при монтаже следует учитывать некоторые нюансы:

  1. Устанавливать аппаратуру подальше от здания, чтобы избежать создания опасного «шагового напряжения».
  2. Если агрегат был смонтирован в условиях вечной мерзлоты, то вокруг него из-за выделяемого тепла во время образования электролита может возникнуть подтаивание земли и образоваться «зона талика».

Преимущества заземления

Если сравнивать стандартные заземлители, то электролитический обладает рядом своих преимуществ, а именно:

  • Монтаж конструкции быстрый и удобный, так как труба с электролитом имеет небольшие размеры и не требует больших земельных работ. Такой агрегат можно установить без дополнительной помощи профессионалов, своими руками.
  • Смесь внутри электролита вступает в реакцию не сразу, тем самым поддерживая постоянный электролитический баланс в грунте.
  • Продукт, что получается в результате реакции, не опасный и не приведет к возникновению коррозии на металлических элементах конструкции.
  • Длительность реакции позволяет применять ее до 15 лет.

Такой заземляющий контур, несмотря на множество достоинств, применяется в особенных случаях, где нет возможности установить обычный заземлитель. Это объясняется высокой стоимостью комплекта.

Монтаж

Для монтажа потребуется универсальный набор ключей, инструмент для выкапывания траншеи и прибор для измерения сопротивления заземления. Чтобы смонтировать заземляющее устройство, нужно руководствоваться следующим порядком действий:

  1. Выкопать траншею глубиной 70 см, длиной около 2200 см и шириной около 30 см.
  2. Перед установкой электрода на дно готовой траншеи уложить околоэлектродный заполнитель.
  3. Установить электрод на дно траншеи так, чтобы короткая часть трубы, с отверстием для заполнения, была направлена вверх.
  4. Высыпать оставшийся заполнитель в траншею поверх уложенного электрода.
  5. Смонтировать колодец в верхней части трубы.
  6. Подсоединить заземляющий проводник с помощью зажима к трубе и заизолировать соединение специальной лентой.
  7. В заливное отверстие электрода влить около 20 литров обычной воды, с помощью которой начнется процесс образования электролита.
  8. Подключить заземляющий проводник к корпусу заземляемого электроприбора и произвести замер сопротивления. Если показания в норме, то заземляющий проводник на время отсоединяют от корпуса электроприбора для безопасного ведения работ. Если сопротивление слишком высокое, то нужно принять меры для его снижения.
  9. После этого засыпают траншею, оставляя горловину электрода над поверхностью земли.
  10. Затем подключают заземляющий проводник к корпусу заземляемого устройства.

Принцип действия

Главный элемент электролитического заземления — полый электрод (труба) |___ -образной
формы с перфорацией в горизонтальной части, устанавливаемый в зоне протайки вечномерзлого грунта (на глубину 0,7 метра) и заполненный специальной смесью минеральных солей.
Эта смесь впитывает воду из окружающей среды, превращаясь в электролит (выщелачиваясь), после чего проникает в грунт, повышая его электропроводность
(понижая его удельное сопротивление) и уменьшая его промерзание (понижая температуру замерзания). Обмен жидкостями осуществляется через перфорированную поверхность электрода.

За основу электрода электролитического заземления взяты традиционные методы, описанные на отдельной странице: «Заземление в вечной мерзлоте».

Комплект заземления ZZ-100-102

Этот вид заземления представлен готовым комплектом ZZ-100-102 (пр. Россия

Электрод – заземлитель (пр. Россия

) 1 штука

Труба из нержавеющей стали в виде буквы “L” с перфорацией в горизонтальной части. Для соединения с заземляющим проводником используется полоса из нержавеющей стали S >= 90 мм², подсоединённые к трубе. Общая длина электрода = 3 метра.

Электрод в комплекте ZZ-100-102 уже наполнен специальной смесью минеральных солей.

Заполнитель околоэлектродный (пр. Россия

) 3 мешка

Грунтовый заменитель из смеси графитовой крошки со специальным видом глинистого минерала предназначен для увеличения площади электрического контакта электрода с почвой, а также для обеспечения равномерности процесса выщелачивания.

Колодец для обслуживания (пр. Россия

) 1 штука

Пластиковый колодец предназначен для установки над вертикальной частью электрода (глубина погружения не более 50 см).

Облегчает обслуживание электрода, проведение замеров его параметров.

Представленные фотографии продуктов могут отличаться от реальных.

Особенности применения

На стадии проектирования заземляющего устройства с применением электролитического заземлителя необходимо учитывать следующую особенность. Так как вокруг заземлителя происходит образование солевого электролита, температура замерзания прилегающего грунта, в зависимости от концентрации солей, находится ниже -10 °С. В результате грунт диаметром до 3 метров вокруг электрода находится в незамерзающем состоянии круглый год. В районах вечной мерзлоты эти зоны грунта могут проседать. Поэтому близко от электролитического заземлителя нельзя располагать строительные конструкции из-за угрозы нарушения их целостности. Также нельзя располагать данный вид заземлителя около подземных коммуникаций, содержащих металлические части из-за возможности их коррозии.

Основные преимущества

Электролитическое заземление имеет ряд достоинств:

  1. У такой конструкции небольшой размер, поэтому ее монтаж довольно прост и удобен. Смонтировать такое заземление вполне можно своими руками, не прибегая к услугам специалистов.
  2. Специальная минеральная смесь внутри электрода поддерживает концентрацию электролита в грунте на одном уровне продолжительное время. Смесь в электрод досыпается один раз в 15 лет.
  3. Солевой раствор, который получается в результате химической реакции, не агрессивен по отношению к корпусу электрода.
  4. При монтаже электролитического заземления, в большинстве случаев, не нужно согласовывать выполнение земляных работ со всеми заинтересованными организациями, как это происходит при монтаже обычного заземляющего устройства.

Недостатки и преимущества

Если сравнить модульно-штыревое заземление с заземляющим контуром, изготовленным с помощью сварки, то штыревое заземление будет иметь следующие преимущества:

  • Легкая и простая установка;
  • Монтаж можно произвести самостоятельно своими руками;
  • Не требуются сварочные работы, так как вся система монтируется с помощью зажимов и соединительных муфт;
  • Нет тяжелых земляных работ;
  • Система не поддается коррозии, так как состоит из омедненных элементов и соответственно имеет продолжительный срок службы;
  • Все элементы модульно-штыревой системы обладают высоким качеством, так как изготовлены на промышленном предприятии;
  • Дополнительные подготовительные работы не требуются.

Монтаж

Для монтажа потребуется универсальный набор ключей, инструмент для выкапывания траншеи и прибор для измерения сопротивления заземления. Чтобы смонтировать заземляющее устройство, нужно руководствоваться следующим порядком действий:

  1. Выкопать траншею глубиной 70 см, длиной около 2200 см и шириной около 30 см.
  2. Перед установкой электрода на дно готовой траншеи уложить околоэлектродный заполнитель.
  3. Установить электрод на дно траншеи так, чтобы короткая часть трубы, с отверстием для заполнения, была направлена вверх.
  4. Высыпать оставшийся заполнитель в траншею поверх уложенного электрода.
  5. Смонтировать колодец в верхней части трубы.
  6. Подсоединить заземляющий проводник с помощью зажима к трубе и заизолировать соединение специальной лентой.
  7. В заливное отверстие электрода влить около 20 литров обычной воды, с помощью которой начнется процесс образования электролита.
  8. Подключить заземляющий проводник к корпусу заземляемого электроприбора и произвести замер сопротивления. Если показания в норме, то заземляющий проводник на время отсоединяют от корпуса электроприбора для безопасного ведения работ. Если сопротивление слишком высокое, то нужно принять меры для его снижения.
  9. После этого засыпают траншею, оставляя горловину электрода над поверхностью земли.
  10. Затем подключают заземляющий проводник к корпусу заземляемого устройства.

Принцип действия защиты

Действие заземления основано на способности грунта поглощать электрический заряд.

Для передачи заряда в грунт заглубляется заземлитель — металлическая конструкция, состоящая из соединенных полосой электродов.

В качестве электродов может использоваться любой металлопрокат: трубы, полоса, уголки и даже сетка.

К заземлителю посредством шин и проводов подсоединяются заземляемые части оборудования и сети.

Защитное заземление предназначено для защиты людей и оборудования от напряжений и токов, могущих появиться в результате какой-нибудь поломки. Различают три его разновидности:

  1. Заземление молниезащиты: молния — мощнейший электрический разряд, который стремится пройти путь от тучи к земле по пути наименьшего сопротивления. У зданий, металлических конструкций и деревьев электрическое сопротивление гораздо ниже, чем у воздуха, поэтому вблизи земли молния устремляется именно к таким объектам. Чтобы отвести разряд от здания, рядом с ним устанавливают более высокую металлическую мачту — молниеприемник, подключенный к заземлителю.
  2. Заземление системы защиты от импульсного перенапряжения (ЗИП): электромагнитное поле от мощной электроустановки, ЛЭП или молниевого разряда может вызвать концентрацию заряда на расположенном поблизости участке сети, например, коммуникационной. Преодолев критическое значение, этот заряд может вызвать пробой в подключенном к сети электронном оборудовании с последующим выходом его из строя. Для сброса заряда параллельно с оборудованием устанавливают газоразрядник, пробиваемый меньшим напряжением, чем защищаемое электронное устройство. Газоразрядник подключается к заземлителю.
  3. Заземление в электросети: эта разновидность заземления является самой распространенной. К заземлителю подключаются корпус и другие части электрооборудования, которые могут оказаться под напряжением при нарушении изоляции токоведущих частей и к которым может прикоснуться пользователь. Если в результате поломки произойдет замыкание фазы на такой элемент и пользователь коснется его, то удар током получится ослабленным из-за того, что значительная часть заряда стечет через заземлитель в грунт. А если прибор будет подключен через УЗО, то электротравмы вообще удастся избежать, поскольку это устройство отключит электропитание сразу после замыкания фазы на заземленный элемент.

Принцип действия системы заземления

Рабочее заземление, в отличие от защитного, функционирует постоянно и предназначено для обеспечения работы электроустановки.

Устройство и принцип работы

Анодный заземлитель, как правило, устанавливается вертикально на глубину свыше 15 метров. Благодаря такому способу монтажа, уровень сопротивления поддерживается на уровне не более 4 Ом.

Отметим, что в роли первых заземляющих устройств применяли рельсы или трубы из чугуна. Но такой металл быстро разрушается под действием коррозии и теряет эффективность. Сегодня предпочтение отдается другим материалам, о которых поговорим ниже.

Анодный заземлитель состоит из следующих составляющих:

  • электрод — главный элемент;
  • соединительный кабель (проводит ток);
  • контактный узел;
  • трубка для отвода газа (для глубинного устройства);
  • крепежный элемент для сбора в виде гирлянды (для глубинного варианта).

Для продления срока службы изделие закрывается кожухом из оцинковки, а полость между внешней частью и сердцевиной заполняется графитным или коксовым составом. Назначение последнего состоит в защите электрода от повреждения и продления его ресурса.

Принцип действия анодного заземлителя направлен на компенсацию отрицательного заряда грунта положительными ионами.

Причина коррозии металла, находящегося в земле — высокий уровень влаги, неоднородная структура и высокая кислотность. Как результат, на поверхности металлического изделия появляются разные потенциалы, провоцирующие появление ржавчины.

Дополнительный негативный фактор, ускоряющий разрушение металла — блуждающие токи, появляющиеся из-за движения по поверхности электротранспорта, электрических станций, вышек мобильных операторов и другого оборудования.

Установка анодного заземлителя гарантирует компенсацию отрицательного заряда и тем самым продлевает срок службы металлических изделий. Одно заземление способно защитить любой металл, расположенный под землей — трубы, емкости, плоские поверхности и т. д.

Требования к защитному заземлению

Защитное заземление – это наиболее жесткое устройство, чем зануление цепи. Здесь предусмотрена прокладка отдельной шины, довольно небольшого уровня сопротивления, которая идет к системе заземлителей, забитых в землю в виде треугольника.

Расчет защитного заземления, требует знания множества формул и наличия множества исходных данных. Поэтому принято для жилого фонда применять типовые проекты контура заземления для каждого региона.

Установка зануления предусматривает прокладку шины нейтрали или любого другого способа отвода тока в однофазной цепи. При этом, значения сопротивлений каждого проводника зануления до подстанции или питающего трансформатора, складываясь, образуют значение сопротивления защитного устройства.

Эта величина может изменяться, но требования к защитному заземлению и занулению, предусматриваю общее значение максимально возможного уровня сопротивления цепи.

Бытовое заземление

правило

При использовании защитного проводника с медным проводом 0,5 мм2 нам не хватит и 100 метров провода для достижения критического значения. Наиболее строгие требования предъявляются при обслуживании участков:

  1. Установки, с напряжением цепи до 1000. В, оснащаются устройством, сопротивление которого, не должно превышать 0,5 Ома. Значение заземленного контура измеряют при помощи специального измерительного прибора – измерителем сопротивления. Это измерение проводится двумя дополнительными заземлителями. Разведя их на определенное расстояние, выполняем замер, затем сдвигая электрод, проводим несколько замеров. Самый худший результат принимается за номинальное значение.
  2. Для обслуживания цепи трансформатора, других источников питания, при величинах напряжения от 220 В до 660 В – величина сопротивления заземления должна быть от 2 Ом до 8 Ом.

Производственное защитное заземление

Использование дополнительных мер для выравнивания величин потенциала – это основная «обязанность» применения защитного обустройства производственных мощностей. Для достижения надежной защиты, все металлические детали конструкций и устройств, а коммуникационные трубопроводы подсоединяются на заземляющий проводник.

В жилых помещениях, так следует оборудовать ванные комнаты и стальной водопровод, канализацию, и трубы отопления. В наше время пускай и редко, но они встречаются. На промышленных объектах заземляют:

  • приводы электрических машин;
  • корпуса каждой электроустановки, находящейся в помещении;
  • коммуникации металлических труб, металлоконструкции;
  • защитные оплетки электрокабелей , с напряжением постоянного тока до 120 В;
  • электрощитовые, различные корпуса системы электропроводки.

Детали, не требующие защиты:

  • металлические корпуса приборов и оборудования, установленных на стальной платформе, главное – обеспечение надежного контакта между ними;
  • разнообразные участки с металлической арматурой, установленная на деревянных конструкциях, исключение составляют объекты, где защита распространяется и на эти объекты;
  • корпуса электрооборудования, имеющие 2, 3 классы безопасности;
  • при вводе в здание электропроводки, с напряжением не выше 25 В, и прохода их сквозь стену из диэлектриков.

В заключение необходимо отметить.

После монтажа каждого из видов защиты, необходимо выполнить проверку величины сопротивления защиты. После этого составляется акт проверки. Замеры, проводят летом и зимой, в это время грунт имеет наибольшее сопротивление.

Проверку жилого фонда рекомендуется проводить раз в год. Помните о необходимости оснащения щитовой автоматами размыкателями цепи и защитным устройством от утечек тока.

Принцип работы

Устройство работает на основе протекания химических реакций, которые увеличивают электрическую проводимость почвы. Электролитическое заземление условно работает по следующему механизму:

  • Смесь, которую заливают в полный электрод, впитывает в себя из окружающей среды воду через специальные отверстия в устройстве.
  • Происходит реакция воды с солью и в результате образовывается электролит, который просачивается в грунт. Благодаря этой смеси почва становится с большей электропроводностью и менее склонной к промерзанию.

Эта реакция происходит в не зависимости от температуры окружающей среды и грунта.

Список информационных источников

1.Долин П.А. Справочник по технике безопасности – М.: Энергоатомиздат 1985г. 

2.Девисилов В.А. Охрана труда – М.: Форум-ИНФРА-М, 2003г.

3.Нейман Л.А. Безопасность жизнедеятельности: теория, вопросы и ответы. Учебное пособие М.: Вузовская книга, 1997г.

  • Консультационные системы в юридической деятельности
  • ПРОБЛЕМА ОТВЕТСТВЕННОСТИ ЛИЧНОСТИ ЗА КУЛЬТУРУ РЕЧИ (Формулировка Понятия Культура Речи)
  • Сущность управления проектами
  • Назначение и использование электронной подписи
  • Международный валютный фонд (по дисциплине «Экономическая теория»)
  • Концепция развития и обучения Л. С. Выготского (Дисциплина «Педагогика»)
  • Педагогика наука и область практической деятельности
  • Личность, как субъект поведения, деятельности и социального взаимодействия
  • Психические процессы (Психологические процессы человека)
  • Психологические особенности подросткового возраста
  • Общая характеристика административно-командной экономической системы.
  • ЭКСПЕРТИЗА В ГРАЖДАНСКОМ ПРОЦЕССЕ (по гражданскому процессу)

Что такое электролитическое заземление и где его применяют?

По правилам техники безопасности при эксплуатации электроустановок потребителей металлический корпус любого электроприбора должен быть надежно присоединен к заземляющему устройству. Это правило касается как промышленных объектов, так и жилых домов и квартир. Использование заземления является одной из мер защиты человека от поражающего действия электрического тока. Одним из его видов является электролитическое заземление. Такое заземление применяют, например, в скальном грунте, когда нет возможности использовать обычное заземления, состоящее из нескольких вбитых в землю двухметровых штырей.

Электролитическое заземление широко применяют в районах, где грунт имеет высокое удельное сопротивление. Это могут быть районы с каменистым, песчаным или вечномерзлым грунтом. Для надежной защиты человека от поражения электрическим током сопротивление заземления должно быть низким, не более 30 Ом. Именно такие показатели надежно уберегут человека от воздействия электрического тока. Применяя электролитическую систему заземления, можно легко добиться необходимых показателей сопротивления заземления.

Устройство состоит из следующих частей:

  1. Электрод — основной элемент заземления. Он выполняется из нержавеющей стали в виде буквы L. Электрод изготавливается из цельной полой трубы диаметром около 70 мм, согнутой под прямым углом. В горизонтальной части электрода выполнены отверстия.
  2. Колодец для обслуживания.
  3. Зажим, предназначенный для соединения электрода с заземляющим металлическим проводником.
  4. Специальная изоляционная лента, предназначенная для защиты болтовых соединений от коррозии.
  5. Заполнитель пространства вокруг электрода, имеющий пониженное удельное сопротивление. Большое значение имеет высокая плотность прилегания заполнителя к электроду.
  6. Специальная электролитическая минеральная смесь, которой заполняется электрод.

Работа заземления при неисправностях электрооборудования

В работе электрооборудования иногда возникают неисправности. Из-за большой нагрузки или плохого контактного соединения может оплавляется изоляция, голый провод соприкасается с корпусом, тем самым приводя к возникновению на нем «фазы».

Такое повреждение опасно тем, что человек, случайно прикоснувшись к такому оборудованию, попадает под напряжение. В данной ситуации, в зависимости от схемы цепи, возможно несколько вариантов развития событий:

Корпус не заземлён, УЗО отсутствует

Корпус повреждённого оборудования находится под напряжением. Внешних проявлений электрический ток не имеет, что опасно прикосновением к прибору человека, не подозревающего о наличии напряжения. Из-за отсутствия защиты это приведет к электротравме или летальному исходу.

Такой вариант электроснабжения является наиболее опасным, так как и УЗО и заземлении отсутствуют.

Корпус заземлён, УЗО отсутствует

Стандартные электрические схемы защищаются автоматическими выключателями. В случае возникновения значительного тока утечки они отключаются, тем самым разрывая цепь и снимая напряжение. Есть в такой схеме и подводные камни. Величина тока утечки не всегда может быть достаточной, чтобы на нее среагировал автоматический выключатель. На это может ряд причин.

Как правило, пробой изоляции происходит через некоторое сопротивление, из-за этого ток утечки может составлять лишь несколько Ампер или десятые доли Ампера. Естественно, что автомат с номиналом 16 Ампер на это не среагирует. В таком случае защита не сработает, или сработает, но с большой выдержкой времени.

Корпус не заземлён, УЗО установлено

УЗО не может сработать без возникновения тока утечки, а при отсутствии заземления он протекать не будет. В этом случае корпус оборудования будет находиться под напряжением, до соприкосновения его с человеком.

Тогда ток через тело пройдёт, так как оно имеет естественное заземление (контакт ног с полом или землей). Только после этого УЗО почувствует утечку и сработает через 0,02 секунды. Напряжение снято — вы в безопасности.

Корпус заземлён, УЗО установлено

Данная схема является самой эффективной для защиты от поражения электрическим током, так как каждое из устройств подкрепляет работу другого. При замыкании оголённого провода на корпус оборудования, последний оказывается под напряжением.

За счёт наличия заземления создается схема: повреждённый провод-корпус-заземлитель, создавая ток утечки. На него мгновенно реагирует УЗО, так как порог его чувствительности составляет от 10мА до 30мА.

Похожие материалы на сайте:

  • Для чего необходимо заземлять приборы
  • Конструкция и устройство заземляющего контура
  • Зачем заземляют ванну в квартире

Правила обслуживания

Длительность безремонтного функционирования электролитического заземления может достигать 50 лет. Обслуживать такое устройство нужно периодически один раз в несколько лет.

Минимум один раз в 3 года нужно производить измерение сопротивления заземляющего устройства. Если значение сопротивления стало выше нормы, то необходимо произвести ревизию всех контактных соединений, начиная от корпуса заземляемого прибора и заканчивая электродом.

Примерно один раз в 5 лет необходимо контролировать уровень минерально-солевой смеси в электроде и при необходимости восстанавливать его.

Впервые система электролитического заземления(иными словами – активный соляной заземлитель или, как его чаще всего называют, активный химический электрод) была запатентована в далеком 1971 году, в Соединенных Штатах. До сих пор в нашей стране использовалось, в большинстве своем, лишь иностранное оборудование, однако несколько лет назад специалистами компании «Бипрон» была разработана и внедрена в производство собственная уникальная система заземления, аналогов которой на сегодняшний день в мире не существует.

Как известно, электрод представляет собой небольшую, полую трубу, диаметром 50-70 мм, которая изготавливается из металлов, не подверженных действию коррозии (таких, как нержавеющая сталь или медь). В основе работы системы электролитического заземления лежит принцип насыщения грунта минеральными солями-электролитами, которые изначально заключены внутри электрода. При смешивании с грунтовой влагой они (соли) превращаются в электролит, а затем проникают в грунт, вымываясь через специальные отверстия в стенках электрода. А, собственно, сам электролит значительно понижает вокруг заземлителя температуру замерзания, параллельно повышая электропроводность.

В случае растворения солевого модуля в воде происходит небольшой «выброс» тепла (так называемая экзотермическая реакция). Ниже приведена схема этого процесса:

Следующий шаг – замена грунта вокруг электрода активатором (специальным заполнителем), имеющим низкое удельное сопротивление. Это необходимо для того, чтобы уменьшить переходное сопротивление по направлению «заземлитель – грунт» и, тем самым, увеличить площадь токоотдачи электрода.

Подобная комбинация (солевой модуль – внутри электрода, а активатор находится снаружи), даже при относительно небольшой длине тела, которую имеет соляной заземлитель (не более 3-6 м), позволяет существенным образом сократить общее количество заземляющих электродов с целью достижения необходимого сопротивления к растеканию тока. Тем самым уменьшаются издержки при транспортировке, монтаже новых контуров заземления электроустановок любой мощности, а также при реконструкции уже существующих.

Даже в случае изменения погодных и климатических условий электролитическое заземление будет работать стабильно. А в отличие от традиционных электродов, эффективность подобного заземления с течением времени и при изменении температуры грунта будет лишь повышаться.

Почему Бипрон?

Принцип работы и особенности установки

Забивание сборного стержня глубинного заземления может осуществляться на 30-40 м ниже уровня земли. Его можно наращивать в длину, насаживая один элемент за другим. Монтируя стержень в землю, в нижнюю часть ставят насадку из стали, к верхней присоединяют муфточку, применяемую для монтажа. Забив заземлитель на 130-150 см в глубину, муфту убирают и на ее место ставят другую, функция которой – соединять стержни. Ставят второй такой же элемент и забивают вглубь. Проделывают операцию со всеми элементами, требующимися на запланированную глубину. Соединяют их специальными деталями, места стыка промазывают пастой. Такие конструкции способны прослужить 20-30 лет.

Для каких целей применяется защитное заземление

Главная цель данного устройства – защитить человека от поражения электротоком. Такое возможно, когда человек становится частью замкнутой цепи, и по его телу будет проходить опасный для жизни ток. Кроме выполнения функции защиты человеческой жизни, заземление также предохраняет электрические приборы от перенапряжения. В результате этого заземлители делятся на две группы — защитное и рабочее.

Целевое назначение защитного устройства состоит в том, чтобы стать гарантией электробезопасности для населения. Вследствие чего электрооборудование и электросети становятся стойкими к влиянию токов и высоких напряжений. Вдобавок происходит предохранение людей, которые в результате работы обслуживают такое оборудование. Повышение напряжения может быть вследствие нарушения эксплуатации или повреждения приборов, а также из-за разряда молнии.

Также конструкция применяется для ликвидации помех и электромагнитных волн от приборов, находящихся рядом в рабочем состоянии.

Это указывается в инструкции для данного оборудования, даже дается схема соединения с заземлителем.В зависимости от назначения существуют вспомогательные виды заземления: измерительное, радио, инструментальное, контрольное.

Защитное заземление

Проектирование и установка

Перед монтажом выполняется проектирование с учетом типа грунта, требований к сроку службу, особенностей защищаемого устройства и финансовых возможностей. При этом работа выполняется с учетом действующего стандарта, ГОСТ Р 51-164, проекта, правил и норм, действующих в определенной сфере.

Также учитываются данные инструкции и паспорта по установке анодного заземлителя.

Монтаж анодных заземлителей необходима в следующих случаях:

  • защита ответственных коммуникаций;
  • снижение опасного влияния на другие металлические конструкции;
  • наличие участков с низким сопротивлением.

При работе на промышленных площадках монтаж заземляющих устройств необходим в местах:

  • с плотным размещением трубопроводов, имеющих плохое состояние;
  • на участках с густой сетью коммуникаций;
  • в районе трубопровода с плохим состоянием покрытия.

Главные правила монтажа:

Электроды в гирлянде должны быть ниже линии промерзания земельного участка

Это особенно важно для земель, которые часто промерзают из-за особенностей местного климата.
Места установки должны иметь специальные обозначения, доступные для считывания в любое время суток.
При силе тока катодной станции выше 25 А необходимо почистить гирлянду с помощью перфорированной трубки для отвода газа, появляющегося в процессе эксплуатации аппаратуры. Газовая сфера, которая появляется возле анода, способствует росту сопротивления и снижает эффективность заземлителя.
Для повышения ресурса скважину рекомендуется заполнять коксовой стружкой, а не обычной землей.
Поверхность анодных заземлителей не должна соприкасаться с защищаемым или иным токопроводящим объектом (над или под землей), не являющихся частью схемы

Расстояние от заземляющего устройства до такого элемента должно быть втрое больше расстояния между поверхностями защищаемого сооружения и электрода.
При наличии повреждений на поверхности ввод заземляющего изделия в эксплуатацию запрещен.
Оптимальная температура для укладки заземляющих устройств — от 10 до 40 градусов Цельсия.

В процессе монтажа запрещено:

  • укладывать оборудование при температуре ниже 10 градусов мороза;
  • делать радиус изгиба меньше 15 внешних диаметров заземлителя;
  • подключать несколько катодных преобразователей на одно анодное заземляющее устройство;
  • держать изделие под прямым солнечным светом больше 10 дней;
  • использование заземлители в силовых и осветительных сетях.

После ввода в эксплуатацию ремонтом анодных заземлителей занимается компания-изготовитель с учетом действующей инструкции. При необходимости для изолирования контактов применяются диэлектрические полимеры и соединительные муфты, предназначенные для таких целей.

Соблюдение ГОСТ 58344-2019 и других нормативных документов позволяет избежать ошибок при проектировании и монтаже, максимально защитить объект и продлить ресурс изделия.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Электрика
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: