Возможные причины выхода из строя
Несоблюдение основных параметров эксплуатации, таких как:
- Номинальное напряжение. При увеличении номинального напряжения, на нём возникает пробой в силу электротехнических характеристик диэлектрика, изолирующего пластины конденсатора.
- Расчётная ёмкость. Несоответствие ёмкости (ниже расчётной) влечёт за собой завышение номинального напряжения на рассматриваемом элементе, поэтому при его замене, если нет аналога, ставится элемент с большей ёмкостью.
- Полярность в некоторых случаях. Полярность является обязательным параметром электролитических и танталовых конденсаторов в силу особенности конструкции.
Рабочая температура зависит от соблюдения вышеописанных параметров напрямую. Исключением является старение, возникающее у электролитического типа, и расположения элемента на печатной плате, вследствие которого его рабочая температура может быть выше критической вследствие размещённых рядом других единиц электрической цепи, имеющих более высокий температурный режим.
Это причина выхода из строя оксиднополупроводникового элемента, так как он уже сам по себе представляет собой взрывчатку: там есть тантал, который является горючим и окислитель двуокись марганца.
Каждый компонент — это порошок и всё это смешано воедино. Не гремучая ли смесь? Именно поэтому повышение температуры из-за пробоя или несоблюдения полярности может привести к взрыву, способного вывести из строя не только соседние элементы, но и плату полностью.
Что такое конденсатор?
Если взглянуть на статистику, то больше половины рекомендаций по ремонту оборудования связано с неисправностью такого элемента, как конденсатор. Этот прибор составляет большое количество различных электросхем. Принцип функционирования сводится к поэтапному накоплению электроэнергии с различным потенциалом между обкладками и последующим быстрым разрядом.
Выделяют два наиболее известных типа конденсаторов, которые устанавливаются в современных схемах:
- Полярные (электролитические). Такое название они получили потому, что при подключении в схему требуется задать определенную полярность: «плюс» к «плюсу», а «минус» к «минусу».
- Неполярные. К этой группе относятся любые другие варианты конденсаторов.
Общепринятое обозначение этого элемента на схемах отчетливо показывает его принцип работы.
Строение этого электронного компонента простое – он состоит из двух покрытых изоляционным слоем обкладок, которые проводят ток. С целью изоляции используют всевозможные материалы и компоненты, которые не проводят электричество: кислород, пластинки из керамики, специальную целлюлозу, фольгу.
По внешнему виду такие элементы отличаются миниатюрным размером при внушительной емкости, поэтому в процессе работы с ними следует соблюдать технику безопасности.
Принцип функционирования
Работа такого элемента, как конденсатор, основывается на том, что находясь в электрической схеме, он способствует накоплению зарядов. Это необходимо только в тех схемах, где происходит распределение составляющих тока (переменный ток). В то время как в схемах с постоянным током конденсатор не сможет накапливать энергию.
Где применяется?
Устанавливают конденсаторы различных видов в радиосхемы и бытовые приборы. Как правило, эти устройства имеют небольшую емкость, поэтому их неисправность не провоцирует тяжелых последствий.
Крупногабаритные конденсаторы составляют различные электрические двигатели, где являются элементами пуска. В данном случае они отличаются большим номиналом и такой же емкостью.
Подготовка
Собираясь прозвонить конденсатор, следует подготовить необходимые инструменты.
В процессе проверки могут понадобиться:
- аналоговый (со стрелочкой) или цифровой омметр или мультиметр;
- небольшие куски провода для удобства сборки схемы проверки;
- лампочка или автомобильный индикатор;
- отвертка.
Следует помнить как проверить электролитический конденсатор мультиметром и не вывести из строя. Необходимо плюсовой и минусовой щупы прибора подключать строго к плюсовому и минусовому выводам детали, не забывая об опасности работы с электрическими приборами под напряжением и соблюдая технику безопасности при выполнении работ.
С использованием мультиметра и формул
Если в вашем распоряжении есть мультиметр с функцией измерения параметра «Cx», то измерить ёмкость конденсатора довольно просто: следует переключить прибор в режим «Сх», после чего выбрать оптимальный диапазон измерения, соответствующий параметрам конденсатора. Ножки конденсатора вставляем в соответствующее гнездо (соблюдая полярность подключения) и считываем его параметры.
Режим «Сх» в мультиметре
Менее точно можно определить ёмкость с помощью тестера, у которого нет режима «Сх». Для этого потребуется источник питания, к которому подключают конденсатор по простой схеме (рис. 2).
Рис. 2. Схема подключения конденсатора
Алгоритм измерения следующий:
- Измерьте напряжение источника питания щупами контактов измерительного прибора.
- Образуйте RC-цепочку с конденсатором и выводами резистора номиналом 1 – 10 кОм.
- Закоротите выводы конденсатора и подключите RC-цепочку к источнику питания.
- Замерьте напряжение образованной цепи с помощью мультиметра.
- Если напряжение изменилось, необходимо подогнать его до значения, близкого к тому, которое вы получили на выходе источника питания.
- Вычислите 95% от полученного значения. Запишите показатели измерений.
- Возьмите секундомер и включите его одновременно с убиранием закоротки.
- Как только мультиметр покажет значение напряжения, которое вы вычислили (95%), остановите секундомер.
- По формуле С = t/3R, где t – время падения напряжения, вычисляем ёмкость конденсатора в фарадах, если единицы измерения сопротивление резистора выразили в омах, а время в секундах.
Рис. 3. Измерение с помощью тестера. Проверка
Подчеркнём ещё раз, что точность измерения ёмкости данным способом не слишком высока, но определить работоспособность радиоэлемента на основании такого измерения вполне возможно. Некоторые узлы электронных приборов исправно работают, если есть небольшие отклонения от номинальных емкостей, главное, чтобы не было электрического пробоя.
Таким же методом можно вычислить параметры керамического радиоэлемента. Для этого необходимо подключить RC-цепочку через трансформатор и подать переменное напряжение. Значение ёмкости в данном случае определяем по формуле: C = 0.5*π*f*Xc , где f – частота тока, а Xc – ёмкостное сопротивление.
Полярные и неполярные конденсаторы
В основном, по конструктивному исполнению конденсаторы делятся на два типа: полярные и неполярные.
К полярным конденсаторам относятся конденсаторы которые имеют полярность, грубо говоря, плюс и минус. К ним чаще всего относятся электролитические конденсаторы, но бывают также и электролитические неполярные конденсаторы. Полярные конденсаторы надо паять в схемы только определенным образом: плюсовый контакт конденсатора к плюсу схему, минусовый контакт – к минусу схемы.
Если полярность такого конденсатора нарушить, то он может серьезно пострадать и даже взорваться. Поверьте мне, взрыв конденсатора – это очень зрелищно, но электролит, который там находится, может серьезно повредить вас и ваше окружение. В основном, это только касается советских конденсаторов.
У импортных конденсаторов сверху имеется небольшое вдавление в виде крестика или какой-нибудь другой фигурки. Их толщина меньше, чем остальная толщина крышечки конденсатора. Как мы с вами знаем, где тонко, там и рвется. Это предусмотрено в целях безопасности. Поэтому, если все-таки импортный конденсатор желает взорваться, то его верхняя часть просто-напросто превратится в розочку.
На фото ниже вздутый конденсатор на материнской плате компьютера. Разрыв идет ровно по линии.
Это интересно: Конденсатор — устройство, принцип работы, применение
Самодельный С — метр
Не принимая во внимание разные экзотические решения, такие как баллистический гальванометр и мостовые схемы с магазином сопротивлений, изготовить простой прибор или приставку к мультиметру по силам и начинающему радиолюбителю. Широко распространённая микросхема серии 555 вполне подходит для этих целей
Это таймер реального времени со встроенным цифровым компаратором, в данном случае используется как генератор.
Частота прямоугольных импульсов задаётся выбором резисторов R1–R8 и конденсаторов С1, С2 переключателем SA1 и равняется: 25 kHz, 2.5 kHz, 250 Hz, 25Hz — соответственно положениям переключателя 1, 2, 3 и 4–8. Конденсатор Сх заряжается с частотой следования импульсов через диод VD1, до фиксированного напряжения. Разряд происходит во время паузы через сопротивления R10, R12–R15. В это время образуется импульс длительностью, зависимой от емкости Сх (больше ёмкость — длиннее импульс). После прохождения интегрирующей цепи R11 C3 на выходе появляется напряжение, соответствующее длине импульса и пропорциональное величине ёмкости Сх. Сюда и подключается (Х 1) мультиметр для измерения напряжения на пределе 200 mV. Положения переключателя SA1 (начиная с первого) соответствуют пределам: 20 пФ, 200 пФ, 2 нФ, 20 нФ, 0.2 мкФ, 2 мкФ, 20 мкФ, 200 мкФ.
Наладку конструкции необходимо делать с прибором, который будет применяться в дальнейшем. Конденсаторы для наладки надо подобрать с ёмкостью, равной поддиапазонам измерений и как можно точнее, от этого будет зависеть погрешность. Отобранные конденсаторы поочерёдно подключаются к Х1. В первую очередь настраиваются поддиапазоны 20 пФ–20 нФ, для этого соответствующими подстроечными резисторами R1, R3, R5, R7 добиваются соответствующих показаний мультиметра, возможно придётся несколько изменить номиналы последовательно включённых сопротивлений. На других поддиапазонах (0.2 мкФ–200 мкФ) калибровка проводится резисторами R12–R15.
Провода, соединяющие резисторы с переключателем должны быть как можно короче, а если позволяет конструкция — размещены на его выводах. Переменные желательно использовать многооборотные, лучше вообще — постоянные, но это не всегда возможно. Тщательнейшим образом необходимо отмыть печатную плату от флюса и другой грязи, иначе паразитные ёмкости и сопротивления между проводниками могут привести к полной неработоспособности изделия.
При выборе источника питания следует учитывать, что амплитуда импульсов напрямую зависит от его стабильности. Интегральные стабилизаторы серии 78хх вполне здесь применимы Схема потребляет ток не более 20–30 миллиампер и конденсатора фильтра ёмкостью 47–100 микрофарад будет достаточно. Погрешность измерений, при соблюдении всех условий, может составить около 5 %, на первом и последнем поддиапазонах, по причине влияния ёмкости самой конструкции и выходного сопротивления таймера, возрастает до 20 %. Это надо учитывать при работе на крайних пределах.
Как можно проверить конденсатор мультиметром, не выпаивая его
Конденсаторы, особенно электролитические, имеют очень неприятное свойство: при прогреве паяльником при пайке они иногда восстанавливают свои свойства. Поэтому вопрос, как проверять исправность конденсатора, не выпаивая его из схемы, становится иногда очень актуальным. К сожалению, сделать это без интеллектуальных ухищрений невозможно, и универсального метода не существует. Вокруг изделия всегда существуют элементы, шунтирующие его своим сопротивлением, и проверка закончится его измерением.
Поэтому профессионалы после впаивания проверенного конденсатора на место иногда включают ремонтируемое устройство, наблюдая за изменениями в его работе. Если работоспособность его восстановилась или что-то изменилось к лучшему, только что проверенную деталь заменяют на новую.
Если проверяемая деталь подключена последовательно с каким-нибудь другим элементом, можно определять ее исправность прямо на плате, выпаяв этот элемент.
Если схема проверяемого устройства сложная, то конденсаторов в ней много. Выпаивать каждый из них для проверки – трудоемкое занятие. К тому же после такого ремонта плата оказывается изрядно перепаханной. В этом случае нужно найти принципиальную схему устройства и проанализировать ее работу. Наличие на схеме контрольных точек с указанными в них напряжениями очень поможет делу. В том, как определять неисправность конденсаторов в этом случае, поможет измерение напряжений на них или на сопряженных с ними узлах схемы. Если напряжение не соответствует ожидаемому, то подозрительный элемент выпаивается и проверяется одним из вышеперечисленных способов.
Проверка вольтметром
Если под рукой не оказалось тестера, проверить работоспособность элемента можно с помощью другого электроизмерительного прибора – вольтметра.
Рекомендуется, но не обязательно, отсоединять деталь от электрической цепи – можно проверить все и на плате, отсоединив только один контакт.
Теперь нужно зарядить конденсатор под напряжением ниже номинала. К примеру, для 25V-ного конденсатора подойдет 9V, а для 600V-ного – 400V. Подсоедините прибор и дайте несколько секунд для зарядки. Во избежание порчи во время зарядки следует проверить полярность выводов и клемм. Время зарядки зависит от разности номинала и питающего напряжения. Так, высоковольтный конденсатор можно зарядить только с помощью мощного прибора, превышающего эту величину.
Через некоторое время конденсатор необходимо подключить к вольтметру и замерить напряжение. Для определения исправности надо зафиксировать начальный показатель – если он приблизительно равен или чуть ниже номинала, то элемент исправен. Значительно меньшее напряжение говорит о том, что конденсатор быстро теряет заряд и уже не может выполнять свою задачу (в среднем обычный конденсатор должен удерживать номинальный заряд на протяжении не менее получаса)
После подключения через вольтметр радиоэлемент начнет разряжаться, поэтому важно записать напряжение, показанное сразу после подключения.
Характеристики параметров устройства
Все важные значения параметров конденсатора расположены на корпусе. На нем также указывается тип элемента, дата выпуска, изготовитель.
Самой важной характеристикой является емкость. Емкость – это величина заряда, который может накопить и отдать элемент
Емкость измеряется в Фарадах. Один Фарад равен емкости, при которой за одну секунду и силе тока в один ампер между прокладками создается напряжение один вольт. Это довольно большая величина и на практике в магнитофонах, плеерах используются миллионные и тысячные части фарады
Емкость – это величина заряда, который может накопить и отдать элемент. Емкость измеряется в Фарадах. Один Фарад равен емкости, при которой за одну секунду и силе тока в один ампер между прокладками создается напряжение один вольт. Это довольно большая величина и на практике в магнитофонах, плеерах используются миллионные и тысячные части фарады.
После значения ёмкости на корпусе показываются допустимые отклонения от неё.
Следующий важный параметр — номинальное напряжение. Всегда необходимо брать радиодеталь с запасом по напряжению, иначе, может случиться пробой диэлектрика и элемент выйдет из строя.
Кроме того, у каждого конденсатора есть еще различные характеристики: рабочая температура, ток номинальный переменный или постоянный.
Они бывают однофазные и трехфазные.
Как проверить электролитический конденсатор мультиметром
Все накопители заряда устроены примерно одинаково, только с применением разных материалов. Например, электролитические конденсаторы имеют две пластины из алюминиевой фольги (электроды), а между ними диэлектрик, материал с большим сопротивлением.
Электролитические неполярные конденсаторы
В качестве диэлектрика в электролитических конденсаторах используется бумага пропитанная электролитом, а для неполярных пленочных конденсаторов диэлектриком является керамика, стекло. Сопротивление бумаги ниже, чем керамики, поэтому электролитические конденсаторы имеют больший ток утечки (саморазряд) по сравнению с пленочными накопителями заряда.
Неисправность конденсаторов
В случае замыкания пластин выделяется тепло, испаряется электролит и происходит взрыв, который выворачивает все внутренности накопителя заряда. Чтобы электролитические конденсаторы не взрывались, на торце его корпуса выдавливается крест. При закипании электролита разрывается торец корпуса по линии креста и пары электролита выходят наружу, не разрывая корпус.
Поэтому на некоторых неисправных конденсаторах образуется вспучивание на торцах корпуса. По типу конденсаторы разделяется на полярные и неполярные. Полярные электролитические конденсаторы работают только при правильном подключении плюса и минуса к маркированным выводам конденсатора. В противном случае накопитель заряда выходит из строя.
Существуют также и электролитические неполярные конденсаторы, которые предназначены для работы в сетях переменного напряжения. Накопители пленочного типа относятся к неполярным емкостям. Соблюдение полярности в схемах для них не обязательно. Состояние конденсатора проверяется мультиметром на сопротивление или в режиме измерения емкости некоторыми мультиметрами (если имеется такой режим).
Проверка конденсаторов цифровым мультометром
Сопротивление диэлектрика электролитического конденсатора меняется от 100 Ком до 1 Мом. Перед проверкой электрического конденсатора нужно его разрядить. Если конденсатор небольшой емкости, то разрядить его можно, замкнув металлической отверткой вывода. Когда емкость большая и его номинальное напряжение высокое, разряжают накопитель через резистор 10 Ком, держа сопротивление инструментом с изолированными ручками.
Разряжать конденсаторы нужно в целях безопасности (особенно высоковольтные) и сохранения работоспособности мультиметра. Оставшееся напряжение на накопителе легко может вывести из строя измерительный прибор. При проверке электролитического полярного конденсатора мультиметром щупы прикладывают к его выводам в соответствии с полярностью, плюс прибора к плюсу накопителя.
Величину измеряемого сопротивления на приборе ставят от 100 Ком до 1 Мом, в зависимости от величины емкости. Для измерения большой емкости предел измерения сопротивления ставят 1 Мом. В начале измерения мультиметр покажет небольшое сопротивление, которое достигнет наибольшего значения при полной зарядке конденсатора. Если дисплей покажет ноль, значит неисправность ёмкости в коротком замыкании, а единица указывает на обрыв выводов.
Работоспособность ёмкости можно проверить, если зарядить ее от источника питания и замерить величину напряжения накопителя мультиметром. Если его рабочее напряжение 25 В, заряжают емкость от источника напряжением 9 — 12 В, в соответствии с полярностью. Показания на дисплее снимаются в момент прикосновения щупов к выводам ёмкости, потому что емкость начинает разряжаться через мультиметр, и напряжение будет падать.
Принцип действия
Конденсаторы представляют собой устройство, состоящие из двух пластин со свойством электрической проводимости.
Пластины не контактируют друг с другом. Между ними есть пространство, которое может быть заполнено кислородом или любым диэлектрическим веществом.
Основной величиной является емкость, ее измеряют в фарадах. Значение вычисляется при способности конденсатора к накоплению количества энергии равному 1 кулону, при показателе разниц напряжения 1 вольт между 2 пластинами. Величина 1 кулон очень большая. Емкости современных устройств варьируются от миллифарад до пикофарад.
Емкость этих элементов понижается или повышается за счет величины пластин и диэлектрического расстояния между ними. При увеличении высоты и ширины пластин, снижают ширину диэлектрика, что способствует увеличению емкости.
Конденсатор работает по следующему принципу:
- Переменное напряжение заряжает токопроводящие пластины устройства.
- На этих пластинах происходит смена потенциалов.
- При снижении напряжения в цепи, конденсатор отдает часть недостающей энергии, стимулируя выравнивание напряжения.
При работе под нагрузкой постоянного напряжения, на пластинах не происходит смены потенциала. Ток выдается импульсными разрядами, согласно установленной полярности. Далее будет дано подробное описание разновидностей конденсаторов и сфер их использования.
Как проверить электролитический конденсатор мультиметром
- Настраиваем прибор на режим измерения сопротивления до 100 Ком.
- Дотрагиваемся до контактных выводов этого кондера измерительными проводами мультиметра, при это необходимо строго соблюдать полярность.
- Внимательно контролируем изменение показаний на шкале измерительного прибора.
Оцениваем результат измерения:
- Если сопротивление начинает расти (происходит заряд) и достигает большого значения, а затем медленно начинает уменьшаться (он разряжается) — элемент исправен.
- Если сопротивление на шкале мультиметра увеличивается, но нет обратного движения показаний (происходит заряд, но нет разряда) – проводящая пластина находится на обрыве. Такой элемент подлежит замене.
- Если сопротивление остаётся малым (не происходит заряд измеряемого элемента) – электролит находится в состоянии короткого замыкания. Его необходимо заменить.
Обязательно нужно разряжать электролит перед его проверкой, чтобы не попасть под напряжение. Разрядить его легко, коснувшись одновременно двух контактов электролита любой отвёрткой с изолированной рукояткой.
Как проверить конденсатор мультиметром
Промышленность выпускает несколько видов проверочного оборудования для измерения электрических параметров. Цифровые более удобны для измерений и дают точные показания. Стрелочные предпочитают за визуальное движение стрелки.
Если кондер с виду абсолютно цел, проверить его без приборов невозможно. Осуществлять проверку лучше с выпаиванием из схемы. Так показатели считываются точнее. Простые детали редко выходят из строя. Зачастую механически повреждаются диэлектрики. Основная характеристика при проверке — пропуск только переменного тока. Постоянный проходит исключительно в самом начале в течение короткого промежутка времени. Сопротивление детали зависит от существующей емкости.
Предпосылка проверки полярного электролитического конденсатора мультиметром на работоспособность — емкость более 0,25 мкФ. Пошаговая инструкция проверки:
- Разряжают элемент. Для этого металлическим предметом закорачиваются его ножки. Замыкание характеризуется появлением искры и звука.
- Переключатель мультиметра ставится на значение сопротивления.
- Прикасаются щупами к ножкам конденсатора с учетом полярности. Красным к плюсовой ножке, черным тыкаем в минусовую. Это необходимо только при работе с полярным устройством.
Конденсатор начинает заряжаться при подключении щупов. Сопротивление растет до максимума. Если при щупов мультиметр запищит при нулевом значении, значит произошло короткое замыкание. Если сразу на циферблате высвечивается значение 1, то в элементе внутренний обрыв. Такие кондеры считаются неисправными — замыкание и обрыв внутри элемента неустранимы.
Если значение 1 появилось спустя некоторое время, элемент считается исправным.
Проверить неполярный конденсатор еще проще. На мультиметре выставляем измерение на мегаомы. После касания щупами смотрим на показания. Если они окажутся менее 2Мом — деталь неисправна. Более — исправна. Полярность соблюдать ни к чему.
Электролитический
Как следует из названия, электролитические кондеры в алюминиевом корпусе наполнены электролитом между обкладками. Габариты самые разные — от миллиметров до десятков дециметров. Технические характеристики могут превышать таковые у неполярных на 3 порядка и достигать больших величин — единиц mF.
В электролитических моделях появляется дополнительный дефект, связанный с ЭПС (эквивалентным последовательным сопротивлением). Этот показатель еще обозначают аббревиатурой ESR. Такие конденсаторы в схемах с высокими частотами отфильтровывают несущий сигнал от паразитных. Но возможно подавление ЭМП, сильно снижая уровень и играя роль резистора. Это ведет к перегреву конструкции детали.
Из чего складывается ESR:
- сопротивление обкладок, выводов, узлов соединения;
- неоднородность диэлектриков, влага, паразитные примеси;
- сопротивление электролита за счет изменения химических параметров при нагреве, хранении, высыхании.
В сложных схемах показатель ЭПС особенно важен, но измеряется только специальными приборами. Некоторые мастера самостоятельно их изготавливают и используют в связке с обычными мультиметрами.
Керамический
Сначала осматриваем устройство визуально. Особенно внимательно, если в схеме использованы детали, бывшие в употреблении. Но и новые керамические материалы могут быть бракованными. Сразу заметны кондеры с пробоем — потемневшие, вздутые, прогоревшие, с растресканным корпусом. Такие электродетали однозначно выбраковываются даже без инструментальной проверки — ясно, что они неработоспособны или не выдают назначенных параметров. Лучше озаботиться поиском причин пробоев. Даже новые экземпляры с трещиной в корпусе являются «миной замедленного действия».
Пленочный
Пленочные устройства применяются в цепях постоянного тока, фильтрах, стандартных резонансных схемах. Основные неисправности устройств с малой мощностью:
- снижение рабочих показателей в результате иссыхания;
- увеличение параметров тока утечки;
- повышение активных потерь внутри цепи;
- замыкание на обкладках;
- потеря контакта;
- обрыв проводника.
Измерить емкость конденсатора возможно в режиме тестирования. Стрелочные модели реагируют отклонением стрелки со скачком и возвратом к нулю. При небольшом отклонении стрелки диагностируют утечку тока при малой емкости.
Малая эффективность с низким уровнем мощности при большом токе утечки мешает широкому применению данных конденсаторов и не позволяет его потенциалу полностью раскрыться. Поэтому использование этого вида кондеров нецелесообразно.
Описание и принцип работы кондесатора
В самом простом случае конденсатор представляет собой две противоположно заряженные пластины с диэлектрической (изолирующей) прокладкой между ними. Диэлектрик имеет очень малую толщину, в сравнении с площадью пластин. Роль диэлектрика может выполнять даже воздух.
В реальном производстве большинство конденсаторов представляют собой многослойные рулоны из токопроводящих электродов, разделенные диэлектриком. Собраны рулоны в цилиндрическом корпусе.
Трудно найти электрическую схему, в которой бы не принимал участия конденсатор.
В различных схемах этот элемент выполняет роль накопителя энергии. Классическая схема, объясняющая действие конденсатора, представлена на рисунке.
Обычная лампочка подсоединена к конденсатору, который с помощью переключателя, через сопротивление, может заряжаться от гальванической батареи. При изменении положения переключатель отсоединяет батарею от конденсатора и соединяет его с лампочкой. Устройство отдает накопленный заряд лампе и можно наблюдать кратковременную вспышку.
На первый взгляд, он напоминает действие батарейки, но отличается от нее по принципу зарядки, скорости разрядки, емкости.
Когда конденсатор подключают к заряжающему устройству, на электродах оказывается много места и ток зарядки сначала максимальный. По мере того как пластины заряжаются, ток уменьшается и исчезает при полной зарядке. На одной пластине собираются электроны — отрицательно заряженные частицы, на другой — ионы, положительные частицы. Чтобы они не перескакивали с одной пластины на другую нужен диэлектрик.
Напряжение, в отличие от тока, растет по мере насыщения конденсатора. Когда от него отключают батарею он сам, как батарейка, становится источником тока. Но, в отличие от батареи, конденсатор разряжается быстро.
Проверяем конденсатор мультиметром в режиме омметра
Для примера мы свами выполним проверку четырех конденсаторов: два полярных (диэлектрических) и два неполярных (керамических).
Но перед проверкой мы должны обязательно разрядить конденсатор, при этом достаточно замкнуть его контакты при помощи любого металла.
Для того чтобы перейти в режим (омметра) сопротивления, мы перемещаем переключатель в группу измерения сопротивления, для того чтобы установить наличие обрыва или короткого замыкания.
Итак, первым делом проверим полярные кондиционеры (5.6 мкФ и 3.3 мкФ), установленных ранее у неработающих энергосберегающих лампочек
Разряжаем конденсаторы путем замыкания их контактов обычной отверткой. Вы можете использовать, удобный для вас, любой другой металлический предмет. Главное чтобы к нему плотно прилегали контакты. Это позволит нам получить точные показания прибора.
Следующим шагом выставляем переключатель на шкалу 2 МОм и соединяем контакты конденсатора и щупы прибора. Далее наблюдаем на дисплее быстро увиливающие параметры сопротивления.
Вы спросите меня, в чем дело и почему на дисплее мы наблюдаем «плавающие показатели» сопротивления? Это объяснить довольно просто, поскольку питание прибора (батарейка) имеет постоянное напряжение и за счет этого происходит зарядка конденсатора.
С течением времени конденсатор все больше и больше накапливает заряд (заряжается), тем самым увеличивая сопротивление. Емкость конденсатора влияет на скорость зарядки. Как только конденсатор получит полную зарядку, значение его сопротивления будет соответствовать значению бесконечности, а мультиметр на дисплее покажет «1». Это параметры рабочего конденсатора.
Нет возможности показать картинку на фотографии. Так для следующего экземпляра емкостью 5.6 мкФ, показатели сопротивления начинаются с 200 кОм и плавно возрастают до тех пор, пока не преодолеют показатель 2 МОм. Эта процедура не занимает более -10 сек.
Для следующего конденсатора емкостью 3.3 мкФ происходит все аналогично, но время процесса занимает менее — 5 сек.
Проверить следующую пару неполярных конденсаторов можно точно также по аналогии с предыдущими конденсаторами. Соединяем щупы прибора и контакты, следим за состоянием сопротивления на дисплее прибора.
Рассмотрим первый «150nК». Вначале его сопротивление несколько снизится примерно до 900 кОм, затем следует его плавное увеличение до определенной отметки. Время процесса занимает — 30 сек.
При этом на мультиметре модели МБГО переключатель устанавливаем на шкалу 20 МОм (сопротивление приличное, очень быстро идет зарядка)
Процедура классическая, снимаем заряд при помощи замыкания контактов отверткой:
Смотрим на дисплей, отслеживая показатели сопротивления:
Делаем вывод, что в результате проверки все представленные конденсаторы исправны.
Пошаговая инструкция
Рассмотрим, как поменять выключатель.
Подготовительный этап
Главное при работе с электричеством — безопасность. При отсутствии уверенности в собственных силах рекомендуется воспользоваться услугами профессионального электрика.
Если решено выполнить работу своими руками, соблюдаем такие подготовительные действия:
- Отсутствие света бывает вызвано не проблемами в электросети, а перегоранием патрона. Проверяем патрон.
- Смотрим, имеется ли свет в других частях дома (квартиры).
- При отсутствии по результатам проверки каких-либо неисправностей, не связанных с электрической сетью, приступаем к демонтажу переключателя. Перед тем как поменять выключатель, обесточиваем квартиру. Для этого используем рубильник. Проверяем сетевое напряжение индикатором. Сообщаем членам семьи о проведении ремонтных работ. Никто не должен пользоваться светом, пока осуществляется замена переключателя.
Определение параметров
Самостоятельно проверить элемент на работоспособность очень просто. Современные мультиметры и тестеры имеют для этого соответствующую функцию. Главным параметром при проверке будет соответствие заявленной и фактической емкости, а также пропускная способность радиодетали. Проводить проверку можно как на самой плате, так и произведя демонтаж детали с печатной платы.
Проверка емкости
Часто конденсаторы, — особенно старые — имеют нечеткое обозначение емкости на своем корпусе. Для того чтобы узнать емкость рабочего устройства, необходимо воспользоваться мультиметром, который имеет функцию замера емкости. Современные мультиметры имеют измерительный диапазон от 20 nF до 200 mF. Чтобы определить емкость не маркированного конденсатора, придется тестировать его в 5 режимах: 20 nF, 200 nF, 2 mF, 20 mF, 200 mF. Также придется учесть полярность, если элемент является полярным. Перед измерением необходимо выпаять конденсатор с цепи.
Инструкция:
- Прибор переключается в режим проверки емкости. Обязательно переключение щупов в гнездо cX.
- Испытуемый элемент перед проверкой нужно разрядить. Это делается путем замыкания обоих концов.
- Оба щупа присоединяются к выводам.
Полученное значение является номиналом емкости.
Определение полярности
Для определения полярности можно провести визуальный осмотр корпуса. Определение «+»:
- Советские конденсаторы имели на корпусе знак «+» со стороны одной из ножек.
- Современные радиодетали также имеют обозначение на корпусе знаком «+».
- SMD конденсаторы имеют на одной из сторон знак «+» или маркируются цветной полосой.
Минус определяется также визуально:
Современные конденсаторы имеют различный цвет корпуса. На корпусах черного или синего цвета минус обозначается как полоса серебряного цвета или синяя стрелочка. SMD элементы имеют обозначение синей или черной полосой. Часто на них «+» сторона имеет выпуклость, а минус просто ровный на конце. Новые конденсаторы, еще до своего монтажа, имеют плюсовую ножку, которая гораздо длиннее минусовой.