Цветомузыкальная приставка на П213.
Очень несложную цветомузыкальную приставку можно собрать на трех транзистрах П213. Три раздельных усилительных каскада предназначены для усиления трех полос звуковой частоты. Каскад на транзисторе VT1 усиливает сигнал на частоте свыше 1000Гц, на транзисторе VT2 – от 1000 до 200Гц, на транзисторе VT3 – ниже 200гЦ. Разделение частот осуществляется простыми RC- фильтрами.
Входной сигнал берется с выхода акустических колонок. Его уровень регулируется с помощью потенциометра R1. Для подстройки уровня яркости каждого канала используются подстроечные резисторы R3, R5, R7. Смещение на базах транзисторов определяется значениями резисторов R2, R4, R6. Нагрузкой каждого каскада являются две параллельно включенные лампочки (6,3 В х 0,28 А). Питается схема от блока питания с выходным напряжением 8-9 В и максимальным током свыше 2А.
Транзисторы П213 могут иметь значительный разброс по усилению тока. Поэтому, значения резисторов R2, R4, R6 необходимо подбирать для каждого каскада — индивидуально. Ток коллектора при этом настраивается на такую величину, чтобы нити накала ламп немного светились в отсутствии входного сигнала. При этом транзисторы обязательно будут греться. Стабильность работы германиевых полупроводниковых приборов очень зависит от температуры. Поэтому, необходимо установить П213 на радиаторы — площадью от 75 кв.см.
Биполярный транзистор KT972A — описание производителя. Основные параметры. Даташиты.
Наименование производителя: KT972A
- Тип материала: Si
- Полярность: NPN
- Максимальная рассеиваемая мощность (Pc): 8 W
- Макcимально допустимое напряжение коллектор-база (Ucb): 60 V
- Макcимально допустимое напряжение эмиттер-база (Ueb): 5 V
- Макcимальный постоянный ток коллектора (Ic): 4 A
- Предельная температура PN-перехода (Tj): 150 °C
- Граничная частота коэффициента передачи тока (ft): 200 MHz
- Статический коэффициент передачи тока (hfe): 750
На принципиальных схемах транзистор обозначается как буквенным кодом, так и условным графическим. Буквенный код состоит из латинских букв VT и цифры (порядкового номера на схеме). Условное графическое обозначение транзистора КТ972А обычно помещают в кружок, символизирующий его корпус. Короткая черточка с линией от середины символизирует базу, две наклонные линии, проведенные к ее краям под углом 60°, — эмиттер и коллектор. Эмиттер имеет стрелку, направленную от базы.
Параметры транзистора КТ972 | ||||
Параметр | Обозначение | Маркировка | Условия | Значение |
Аналог | КТ972А | BD877, BD263 *2, SK9255 *3, BD321A *3 | ||
КТ972Б | BD875, BD477, BSP50 *3, SMD3303 *3, BD675A *2 | |||
Структура | — | n-p-n | ||
Максимально допустимая постоянная рассеиваемая мощность коллектора | PK max,P*K, τ max,P**K, и max | КТ972А | — | 8* |
КТ972Б | — | 8* | ||
КТ972В | — | 8* | ||
КТ972Г | — | 8* | ||
Граничная частота коэффициента передачи тока транзистора для схемы с общим эмиттером | fгр, f*h21б, f**h21э, f***max | КТ972А | — | ≥200 |
КТ972Б | — | ≥200 | ||
КТ972В | — | ≥200 | ||
КТ972Г | — | ≥200 | ||
Пробивное напряжение коллектор-база при заданном обратном токе коллектора и разомкнутой цепи эмиттера | UКБО проб., U*КЭR проб., U**КЭО проб. | КТ972А | 1к | 60* |
КТ972Б | 1к | 45* | ||
КТ972В | 1к | 60* | ||
КТ972Г | 1к | 60* | ||
Пробивное напряжение эмиттер-база при заданном обратном токе эмиттера и разомкнутой цепи коллектора | UЭБО проб., | КТ972А | — | 5,00 |
КТ972Б | — | 5,00 | ||
КТ972В | — | 5,00 | ||
КТ972Г | — | 5,00 | ||
Максимально допустимый постоянный ток коллектора | IK max, I*К , и max | КТ972А | — | 4* |
КТ972Б | — | 4* | ||
КТ972В | — | 2,00 | ||
КТ972Г | — | 2,00 | ||
Обратный ток коллектора — ток через коллекторный переход при заданном обратном напряжении коллектор-база и разомкнутом выводе эмиттера | IКБО, I*КЭR, I**КЭO | КТ972А | 60 В | ≤1* |
КТ972Б | 45 В | ≤1* | ||
КТ972В | 60 В | ≤1* | ||
КТ972Г | 60 В | ≤1* | ||
Статический коэффициент передачи тока транзистора в режиме малого сигнала для схем с общим эмиттером | h21э, h*21Э | КТ972А | 3 В; 1 А | ≥750* |
КТ972Б | 3 В; 1 А | ≥750* | ||
КТ972В | 3 В; 1 А | 750…5000 | ||
КТ972Г | 3 В; 1 А | 750…5000 | ||
Емкость коллекторного перехода | cк, с*12э | КТ972А | — | ≤3 |
КТ972Б | — | ≤3 | ||
КТ972В | — | ≤3 | ||
КТ972Г | — | ≤1.9 | ||
Сопротивление насыщения между коллектором и эмиттером | rКЭ нас, r*БЭ нас, К**у.р. | КТ972А | — | — |
КТ972Б | — | — | ||
КТ972В | — | — | ||
КТ972Г | — | — | ||
Коэффициент шума транзистора | Кш, r*b, P**вых | КТ972А | — | — |
КТ972Б | — | — | ||
КТ972В | — | — | ||
КТ972Г | — | — | ||
Постоянная времени цепи обратной связи на высокой частоте | τк, t*рас, t**выкл, t***пк(нс) | КТ972А | — | ≤200* |
КТ972Б | — | ≤200* | ||
КТ972В | — | ≤200* | ||
КТ972Г | — | ≤200* |
Описание значений со звездочками(*,**,***) смотрите в таблице параметров биполярных транзисторов.
*2 — функциональная замена, тип корпуса аналогичен.
*3 — функциональная замена, тип корпуса отличается.
Производители
Daya Electric Group; DCCOM (Dc Components); Futurlec; HTSEMI (Shenzhen Jin Yu Semiconductor); KEXIN (Guangdong Kexin Industrial); Kisemiconductor (Kwang Myoung I.S.); Micro Electronics; NEC; Rectron Semiconductor; SECO (SeCoS Halbleitertechnologie GmbH); Stanson Technology; TGS (Tiger Electronic); UTC (Unisonic Technologies); Weitron Technology; Willas Electronic Corp; Winnerjoin (Shenzhen Yongerjia Industry).
Аналоги транзистор C945
Type | Mat | Struct | Pc | Ucb | Uce | Ueb | Ic | Tj | Ft | Cc | Hfe | Caps |
2DC2412R | Si | NPN | 0.3 | 50 | 0.15 | 180 | 180 | SOT23 | ||||
2SC1623RLT1 | Si | NPN | 0.3 | 60 | 50 | 7 | 0.15 | 150 | 180 | 3 | 180 | SOT23 |
2SC1623SLT1 | Si | NPN | 0.3 | 60 | 50 | 7 | 0.15 | 150 | 180 | 3 | 270 | SOT23 |
2SC2412-R | Si | NPN | 0.2 | 60 | 50 | 7 | 0.15 | 150 | 180 | 2 | 180 | SOT23 |
2SC2412-S | Si | NPN | 0.2 | 60 | 50 | 7 | 0.15 | 150 | 180 | 2 | 270 | SOT23 |
2SC2412KRLT1 | Si | NPN | 0.2 | 60 | 50 | 7 | 0.15 | 150 | 180 | 2 | 180 | SOT23 |
2SC2412KSLT1 | Si | NPN | 0.2 | 60 | 50 | 7 | 0.15 | 150 | 180 | 2 | 270 | SOT23 |
2SC945LT1 | Si | NPN | 0.23 | 60 | 50 | 5 | 0.15 | 150 | 150 | 2.2 | 200 | SOT23 |
2SD1501 | Si | NPN | 1 | 70 | 1 | 150 | 250 | SOT23 | ||||
2STR1160 | Si | NPN | 0.5 | 60 | 60 | 5 | 1 | 150 | 250 | SOT23 | ||
50C02CH-TL-E | Si | NPN | 0.7 | 60 | 50 | 5 | 0.5 | 150 | 500 | 2.8 | 300 | SOT23 |
BRY61 | Si | PNPN | 0.25 | 70 | 70 | 70 | 0.175 | 150 | 1000 | SOT23 | ||
BSP52T1 | Si | NPN | 1.5 | 100 | 80 | 5 | 0.5 | 150 | 150 | 5000 | SOT23 | |
BSP52T3 | Si | NPN | 1.5 | 100 | 80 | 5 | 0.5 | 150 | 150 | 5000 | SOT23 | |
C945 | Si | NPN | 0.2 | 60 | 50 | 5 | 0.15 | 150 | 150 | 3 | 130 | SOT23 |
DNLS160 | Si | NPN | 0.3 | 60 | 1 | 150 | 200 | SOT23 | ||||
DTD123 | Si | Pre-Biased-NPN | 0.2 | 50 | 0.5 | 150 | 200 | 250 | SOT23 | |||
ECG2408 | Si | NPN | 0.2 | 60 | 65 | 0.3 | 150 | 300 | 300 | SOT23 | ||
FMMT493A | Si | NPN | 0.5 | 60 | 1 | 150 | 500 | SOT23 | ||||
FMMTL619 | Si | NPN | 0.5 | 50 | 1.25 | 180 | 300 | SOT23 | ||||
L2SC1623RLT1G | Si | NPN | 0.225 | 60 | 50 | 7 | 0.15 | 150 | 250 | 3 | 180 | SOT23 |
L2SC1623SLT1G | Si | NPN | 0.225 | 60 | 50 | 7 | 0.15 | 150 | 250 | 3 | 270 | SOT23 |
L2SC2412KRLT1G | Si | NPN | 0.2 | 60 | 50 | 7 | 0.15 | 150 | 180 | 2 | 180 | SOT23 |
L2SC2412KSLT1G | Si | NPN | 0.2 | 60 | 50 | 7 | 0.15 | 150 | 180 | 2 | 270 | SOT23 |
MMBT945-H | Si | NPN | 0.2 | 60 | 50 | 5 | 0.15 | 150 | 150 | 3 | 200 | SOT23 |
MMBT945-L | Si | NPN | 0.2 | 60 | 50 | 5 | 0.15 | 150 | 150 | 3 | 130 | SOT23 |
NSS60201LT1G | Si | NPN | 0.54 | 60 | 4 | 150 | SOT23 | |||||
ZXTN19100CFF | Si | NPN | 1.5 | 100 | 4.5 | 150 | 200 | SOT23F | ||||
ZXTN25050DFH | Si | NPN | 1.25 | 50 | 4 | 200 | 240 | SOT23 | ||||
ZXTN25100DFH | Si | NPN | 1.25 | 100 | 2.5 | 175 | 300 | SOT23 |
Основные параметры
Транзисторы серии КТ837 подразделяют на 19 типов (от А до Х). У всей линейки одинаковая заявленной рассеиваемая мощность 30 Вт (при использовании теплоотвода) и ток коллектора 7,5 А (у белорусского до 10 А). По остальным параметрам они отличаются между собой, в основном величиной максимального напряжению между выводами и коэффициентом усиления по току (разброс по h21Э от 10 до 150).
Ниже представлены все возможные типы транзистора КТ837 и их основные технические характеристики. Значения указаны для температуры окружающей среды не более +25 oС.
Как видно из представленной таблицы параметров, данные устройства не могут похвастаться способностью работать при высоких температурах, характерных для большинства современных аналогов. Так, максимальный нагрев корпуса (ТК) у них не должен превышать +100 oС, а перехода (ТП) +125oС. Граничная частота коэффициента передачи тока (F гр.) иногда больше 1 МГц, в новых партиях может достигать 5 МГц.
Коэффициент h21Э
К сожалению, разброс значений коэффициента усиления по току h21Э (он же HFE в зарубежной литературе) у серии КТ837 очень высокий — это один из главных её минусов. При этом, данный параметр может плавать в разных партиях как в большую, так и в меньшую сторону. Например, у некоторых транзисторов h21Э по даташит составляет 150, а при замерах в реальной жизни — в два, а то и в три раза хуже заявленного и не превышать 50.
Чтобы избежать сюрпризов в работе уже купленного транзистора, необходимо предварительно проверять соответствие значения h21Э с данными из даташит. Это можно сделать обычным мультиметром. Также заранее необходимо определится с его ролью в проекте. Устройства с буквами «В», «E», «Н» в конце маркировки, лучше подходят для усиления — они имеют h21Э от 50 до 150 и большой запас по возможному напряжению между выводами коллектор-эммттер
Для коммутационных схем лучше обратить внимание на устройства с меньшим h21Э и напряжением насыщения
Наиболее универсальными в линейке являются транзисторы КТ837Ф. Как видно из таблицы параметров, они обладают довольно низким напряжением насыщения (UКЭ.нас. до 0,5 В), небольшим для этого током базы (IКБO до 0,15 мА) и высоким h21Э (от 50 до 150). Они хорошо подходят как для усиливающих, так и для переключений схем.
Меры безопасности
Для стабильной работы любого полупроводникового устройства необходимо правильно рассчитать его обвязку и добиться соблюдения режимов эксплуатации. Производители обычно рекомендуют отнимать от заявленных в даташит значений параметров 20-30%. Чтобы транзистор меньше грелся дополнительно предусматривают установку его на радиатор.
Комплементарная пара
Комплементарной парой для рассматриваемого устройства является серия с NPN-структурой КТ805. Её долгие годы производили «без пары» и поэтому не указывали данной информации в технических справочниках. Позже для него начали производить комплементарник — КТ837 PNP-структуры. Очень часто эта парочка встречалась в выходных каскадах УНЧ. В советские годы их применяли в активной акустике вроде «Радиотехник S70», блоках УНЧ-50-8 усилителей «Радиотехника У7101 СТЕРЕО», «Радиотехника У101 СТЕРЕО».
Аналоги
Для транзистора КТ837 довольно сложно найти аналог. В большинстве случаев, при поиске ему альтернативы можно найти рекомендации по замене на уже снятые с производства транзисторы. Поэтому многие радиолюбители предпочитают не заморачиваться и меняют на оригинальный. В российских магазинах радиотоваров найти его не сложно. Тем не менее, для некоторых транзисторов этой серии можно рассмотреть следующие варианты замены:
- КТ837А, КТ837Г – BD244A, TIP42C;
- КТ837Б — BD302, KT818Б;
- КТ837В — КТ835Б, 2SB834;
- КТ837Д — 2N6111;
- КТ837C — 2N6108, 2N6109, BD225;
- КТ837Е — BD277;
- КТ837К — TIP127, КТ8115А;
- КТ837Н — 2N6107, BD223;
- КТ837Ф — 2N6106, BD224;
- КТ837Х — NTE197.
Зарубежные прототипы
- КТ815Б — BD135
- КТ815В — BD137
- КТ815Г — BD139
14 thoughts on “ КТ815 параметры ”
Мощным данный транзистор назвать нельзя, не смотря на 8-ку в маркировке. Он ближе к средней мощности, а в мощных схемах используется как предварительный для 819-х и выше
Как основной недостаток, я бы выделил разброс коэффициента усиления, а в некоторых схемах это важно. Почему то не приведена граничная частота, а она тоже не очень высокая
Одним словом — обычный, среднепараметризованный транзистор для бытового использования. Да, еще там начальная нелинейность подзатянута, не для всех классов усиления хороши.
Граничная частота КТ815 для схемы с общим эмиттером составляет 3 МГц. p. s. Как и всех отечественных «чисто гражданских» транзисторов разброс параметров КТ815 очень большой.
Предполагаю, что гражданскими транзисторами «КТ» являлась отбраковка военных транзисторов «2Т». Протестировали кристаллы, те что получше — в металл, похуже в пластик. Именно из-за такого разброса на заводах была даже такая профессия «регулировщик».
На алиэкспрессе можно и на перемаркированные детали попасть. Я покупаю только если есть положительные отзывы. Думаю цены на BD139 и BD140 такие потому что раритет. Если в схеме нужны биполярные на небольшую мощность, я ставлю что-то из серии BCP51 — BCP56. И в Китае делают хорошую продукцию, но только под контролем американских, европейский, японских или южнокорейских фирм
Контролировать работу необходимо, причем не только китайских, но и всех узко… вы понимаете. А делать это сейчас очень и очень несложно, не выходя из, скажем AMD-шного офиса, находящегося в Германии почему-то. Все линии автоматизированы, все данные поступают на сервер и могут контролироваться в реальном режиме времени из любой точки мира. К нему-же и видео наблюдение подстегнуто. Смотришь, пошел курить опий, берешь микрофон и, на доступном японамамском, вежливо просишь вернуться назад. Загранкомандировки технологам оплачивать не нужно.
Возможно, что и перемаркировка. Но, когда только сделал характериограф, из любопытства тыкал в него все что под руку попадалось, в том числе и транзисторы с распая корейской аудио-видео аппаратуры. Транзисторы из одного раскуроченного музыкального центра LG имеют близкие параметры, а те же транзисторы из другого МЦ сделанного годом-двумя раньше отличаются от них как небо и земля. Транзисторы из одной партии похожи друг на друга, а вот когда они из разных партий, тут уже возможны варианты…
Старый, добрый КТ815, именно на нём делал свои первые самоделки, они встречались практически во всей советской аппаратуре. Даже сейчас, если порыться в хламе, штук 10-15 выпаять можно.
Транзистор удобен в практике. Их много почти у каждого в загашнике. Относительно не большой, и мощный, не дорогой. Разной проводимости КТ814 (p-n-p) и КТ815 (n-p-n).
По характеристикам указана предельная температура 150 °C, но на практике сталкивался с выходом из строя в блоках питания КТ815 уже при температуре близкой к 100 °C, возникала холостая проводимость между К-Э. При перегревах выходных каскадов на КТ815 и КТ814 в УМЗЧ иногда происходили необратимые изменения ВАХ, но усилитель продолжал дальше работать с незначительными искажениями. Часто использовал такие транзисторы в схемах стабилизации частоты вращения моторчиков на старых магнитолах, и в коммутации к радиоуправляемым моделям.
Распиновка
Цоколевка у TIP127 следующая. Большинство фирм производителей изготавливают данный транзистор в корпусе ТО-220 с жесткими выводами. Материал корпуса пластмасса. Первый вывод слева, если смотреть со стороны маркировки является базой, второй коллектором, третий эмиттером. Коллектором также является металлическое основание.
Но есть и исключения из правил. Так, компания Unisonic Technologies выпускает данный прибор в другом пластовом корпусе ТО-126. Первая ножка рассматриваемого устройства – эмиттер, вторая – коллектор, третья – база.
Маркировка
На лицевой стороне корпуса транзистора наносится маркировка. На ней расположены такие сведения:
- название устройства (TIP127);
- буква G означает, что прибор не содержит свинца;
- А – место сборки;
- год выпуска;
- рабочая неделя.
Замена импортных транзисторов отечественными
Аналоги и возможные замены | |||
Тип | Аналог | Возможная замена | Примечания |
MJEF34 | КТ816 | Любой мощный рпр-транзистор с максимальным током коллектора большим 3 А | |
TIP42 | КТ816 | ||
2SK58 | КПС315А, Б | ||
2N5911 | Обычные ПТ | ||
U441 | КП303Д, Е; КП307Г, Д;КПЗ12; КП323;КП329; КП341;КП364Д, Е | ||
U444 | КП303Д, Е; КП307Г, Д;КП312; КП323,КП329; КП341;КП364Д, Е | ||
MPF102 | КП303Д, Е | В этой схеме можно применить любой высокочастотный полевой транзистор с каналом ri-типа и изоляцией рп-переходом. При наладке схемы может понадобиться подобрать резисторы в цепях затворов и/или истоков. Предпочтение следует отдавать транзисторам с наибольшим и начальными токами стока, малым пороговым напряжением и уровнем шума на ВЧ | |
MPS3866 | КТ368 | В этой схеме можно применить любой высокочастотный биполярный прп-транзистор. Предпочтение следует отдавать транзисторам с малым уровнем шума на ВЧ | |
25139 | КП327А,В | КП346А-9; КП382А | |
1N754 | КС162 | ||
1N757A | КС182 | ||
2N3563 | КТ6113; КТ375;КТ345; КТ315;КТ3142; КТ3102Г,Е | ||
2N3565 | КТ6113; КТ375;КТ345; КТ315;КТ3142; КТ3102Г,Е | ||
2N3569 | КТ6113; КТ375;КТ345; КТ315;КТ3142; КТ3102Г,Е | ||
BFR90 | КТ3198А | КТ371А, КТ3190А | |
MPS3866 | КТ939А | ||
MRF557 | КТ948; КТ996Б-2;КТ9141; КТ9143;КТ919; КТ938 | ||
MRF837 | КТ634; КТ640; КТ657Б-2 | ||
MV2101 | KB102; KB107А,В | ||
2N4401 | КТ6103 | КТ504 | |
2N4403 | КТ6102, КТ6116 | КТ505 | |
ВС547В | КТ3102 | ||
ВС549С | КТ3102 | ||
ВС557В | KТ3107 | ||
BD139 | КТ815 | ||
BD140 | КТ814 | ||
2N5771 | КТ363АМ | ||
ВС548 | КТ3102 | ||
ВС557 | КТ3107 | ||
TIP111 | КТ716 | ||
TIP116 | КТ852 | ||
TIP33B | КТ865 | ||
TIP34B | КТ864 | ||
2SC2092 | КТ981, КТ955А,КТ9166А, КТ9120 | ||
MRF475 | КТ981, КТ955А,КТ9166А, КТ9120 | ||
40673 | КП350, КП306,КП327, КП347,КП382 | ||
2N4124 | КТ3102Д | ||
J309 | КП303Д, Е; КП307Г, Д;КПЗ12, КП323;КП329; КП341;КП364Д, Е | ||
MPS2907 | КТ313 | ||
2N3414 | КТ645 | ||
2N4403 | КТ6102, КТ6116 | КТ505 | |
3055Т | КТ8150А | ||
ВС517 | КТ972 | ||
IRF9Z30 | КП944 | ||
TIP125 | КТ853, КТ8115 | ||
BS250P | КП944 | ||
2N3391A | КТ3102 | Любые маломощные с большим h2fe | |
BC184L | КТ3102 | Любые маломощные с большим h2fe | |
ВС547В | КТ3102 | ||
BUZ11 | КП150 | ||
IRFL9110 | КП944 | ||
2N4401 | КТ6103, КТ6117 | КТ504 | |
2N4403 | КТ6102, КТ6116 | КТ505 | |
ВС109С | КТ342 | ||
ВС237 | КТ3102 | ||
ВС547 | КТЗ102, КТ645А | ||
2N4401 | КТ6103, КТ6117 | КТ504 | |
2N4403 | КТ6102, КТ6116 | КТ505 | |
MPS А18 | КТ342Б, Д | ||
2N3704 | КТ685 | ||
2N4393 | КП302ГМ | ||
2N5401 | КТ6116А | ||
ВС487 | КТ342Б, Д; КТ630Е | ||
IRFZ44 | КП723А | ||
MPS2907 | КТ313 | КТ3107 | |
MPSА14 | КТ685 | ||
MPSA64 | КТ973 | ||
2N2222 | КТ3117Б | КТ315 | |
2N3904 | КТ6137А | КТ815 | |
2N3906 | КТ6136А | ||
ECG-187 | ГТ906А | ||
FPT-100 | фототранзистор | ||
HRF-511 | КП904 | ||
TIL 414 | фототранзистор |
Нужно заменить диод или стабилитрон? — аналоги и замены диодов и полупроводников.
Характеристики популярных аналогов
Наименование производителя: KT972A
- Тип материала: Si
- Полярность: NPN
- Максимальная рассеиваемая мощность (Pc): 8 W
- Макcимально допустимое напряжение коллектор-база (Ucb): 60 V
- Макcимально допустимое напряжение эмиттер-база (Ueb): 5 V
- Макcимальный постоянный ток коллектора (Ic): 4 A
- Предельная температура PN-перехода (Tj): 150 °C
- Граничная частота коэффициента передачи тока (ft): 200 MHz
- Статический коэффициент передачи тока (hfe): 750
Наименование производителя: WW263
- Тип материала: Si
- Полярность: NPN
- Максимальная рассеиваемая мощность (Pc): 65 W
- Макcимально допустимое напряжение коллектор-база (Ucb): 100 V
- Макcимально допустимое напряжение коллектор-эмиттер (Uce): 100 V
- Макcимально допустимое напряжение эмиттер-база (Ueb): 5 V
- Макcимальный постоянный ток коллектора (Ic): 10 A
- Предельная температура PN-перехода (Tj): 150 °C
- Ёмкость коллекторного перехода (Cc): 200 pf
- Статический коэффициент передачи тока (hfe): 1000
- Корпус транзистора: TO220
Наименование производителя: U2T833
- Тип материала: Si
- Полярность: NPN
- Максимальная рассеиваемая мощность (Pc): 60 W
- Макcимально допустимое напряжение коллектор-эмиттер (Uce): 300 V
- Макcимально допустимое напряжение эмиттер-база (Ueb): 12 V
- Макcимальный постоянный ток коллектора (Ic): 5 A
- Предельная температура PN-перехода (Tj): 200 °C
- Статический коэффициент передачи тока (hfe): 1000
- Аналоги (замена) для U2T833
Наименование производителя: U2T832
- Тип материала: Si
- Полярность: NPN
- Максимальная рассеиваемая мощность (Pc): 60 W
- Макcимально допустимое напряжение коллектор-эмиттер (Uce): 200 V
- Макcимально допустимое напряжение эмиттер-база (Ueb): 12 V
- Макcимальный постоянный ток коллектора (Ic): 5 A
- Предельная температура PN-перехода (Tj): 200 °C
- Статический коэффициент передачи тока (hfe): 1000
Наименование производителя: U2T823
- Тип материала: Si
- Полярность: NPN
- Максимальная рассеиваемая мощность (Pc): 35 W
- Макcимально допустимое напряжение коллектор-эмиттер (Uce): 300 V
- Макcимально допустимое напряжение эмиттер-база (Ueb): 12 V
- Макcимальный постоянный ток коллектора (Ic): 5 A
- Предельная температура PN-перехода (Tj): 200 °C
- Статический коэффициент передачи тока (hfe): 1000
Наименование производителя: U2T6O1
- Тип материала: Si
- Полярность: NPN
- Максимальная рассеиваемая мощность (Pc): 50 W
- Макcимально допустимое напряжение коллектор-база (Ucb): 80 V
- Макcимальный постоянный ток коллектора (Ic): 20 A
- Предельная температура PN-перехода (Tj): 200 °C
- Статический коэффициент передачи тока (hfe): 1000
- Корпус транзистора: TO66
Наименование производителя: U2T605
- Тип материала: Si
- Полярность: NPN
- Максимальная рассеиваемая мощность (Pc): 50 W
- Макcимально допустимое напряжение коллектор-база (Ucb): 150 V
- Макcимальный постоянный ток коллектора (Ic): 20 A
- Предельная температура PN-перехода (Tj): 200 °C
- Статический коэффициент передачи тока (hfe): 1000
- Корпус транзистора: TO66
Наименование производителя: TTD1415B
- Маркировка: D1415B
- Тип материала: Si
- Полярность: NPN
- Максимальная рассеиваемая мощность (Pc): 25 W
- Макcимально допустимое напряжение коллектор-база (Ucb): 120 V
- Макcимально допустимое напряжение коллектор-эмиттер (Uce): 100 V
- Макcимально допустимое напряжение эмиттер-база (Ueb): 6 V
- Макcимальный постоянный ток коллектора (Ic): 7 A
- Предельная температура PN-перехода (Tj): 150 °C
- Статический коэффициент передачи тока (hfe): 1000
- Корпус транзистора: TO220SIS
Область применения транзисторов 13001
Транзисторы серии 13001 разработаны специально для применения в преобразовательных устройствах небольшой мощности в качестве ключевых (переключающих) элементов.
- сетевые адаптеры мобильных устройств;
- электронная пускорегулирующая аппаратура люминесцентных ламп малой мощности;
- электронные трансформаторы;
- другие импульсные устройства.
Нет принципиальных ограничений на использование транзисторов 13001 в качестве транзисторных ключей. Также можно применять данные полупроводниковые приборы в усилителях низкой частоты в случаях, где не требуется особое усиление (коэффициент передачи по току у серии 13001 по современным меркам невелик), но в этих случаях не реализуются довольно высокие параметры этих транзисторов по рабочему напряжению и их высокое быстродействие.
Лучше в этих случаях применить более распространенные и дешевые типы транзисторов. Также при построении усилителей надо помнить, что комплементарная пара у транзистора 31001 отсутствует, поэтому с организацией двухтактного каскада могут быть проблемы.
На рисунке приведен характерный пример использования транзистора 13001 в сетевом зарядном устройстве для аккумулятора переносного устройства. Кремниевый триод включен в качестве ключевого элемента, формирующего импульсы на первичной обмотке трансформатора ТР1. Он с большим запасом выдерживает полное выпрямленное сетевое напряжение и не требует дополнительных схемотехнических мер.
Температурный профиль для пайки бессвинцовым припоем
При пайке транзисторов надо соблюдать определенную осторожность, не допуская излишнего нагрева. Идеальный температурный профиль указан на рисунке и состоит из трех этапов:
- этап предварительного нагрева длится около 2 минут, за это время транзистор прогревается от 25 до 125 градусов;
- собственно пайка длится около 5 секунд при максимальной температуре 255 градусов;
- заключительный этап – расхолаживание со скоростью от 2 до 10 градусов в секунду.
Этот график сложно соблюсти в домашних условиях или в мастерской, да и не так это важно при демонтаже-монтаже единичного транзистора. Главное – не превышать максимально допустимую температуру пайки
Watch this video on YouTube
Транзисторы 13001 имеют репутацию достаточно надежных изделий, и при условиях эксплуатации, не выходящих за установленные пределы, могут прослужить долго без отказов.
Описание, технические характеристики и аналоги выпрямительных диодов серии 1N4001-1N4007
Описание, характеристики и схема включения стабилизатора напряжения КРЕН 142
Описание характеристик, назначение выводов и примеры схем включения линейного стабилизатора напряжения LM317
Описание, устройство и принцип работы полевого транзистора
Как работает микросхема TL431, схемы включения, описание характеристик и проверка на работоспособность
Как работает транзистор и где используется?
Цветовая и цифровая маркировка
Транзисторы, как и другие радиокомпоненты, маркируют с помощью цветового кода. Цветовой код состоит из изображения геометрических фигур (треугольников, квадратов, прямоугольников и др.), цветных точек и латинских букв.
Код наносится на плоских частях, крышке и других местах транзистора. По нему можно узнать тип транзистора, месяц и год изготовления. Места маркировки и расшифровка цветовых кодов некоторых типов транзисторов приведены на рис. 2…3 и в табл. 1…4. Практикуется также маркировка некоторых типов транзисторов цифровым кодом (табл. 4).
Таблица 1. Цветовая и кодовая маркировки маломощных среднечастотных и высокочастотных транзисторов.
Тип транзистора | Группы транзисторов | Месяц выпуска | Год выпуска | ||||
Обозначение | Маркировка | Обозначение | Маркировка | Обозначение | Маркировка | Обозначение | Маркировка |
ян в. | бежевая | ||||||
А | розовая | фев. | синяя | 1977 | бежевая | ||
Б | желтая | март | зеленая | 1978 | еалатовая | ||
В | синяя | апр. | красная | 1979 | оранжевая | ||
Г | бежевая | май | еалатовая | 1980 | электрик | ||
Д | оранжевая | июнь | серая | 1981 | бирюзовая | ||
КТ3107 | голубая | Е | электрик | июль | коричневая | 1982 | белая |
Ж | еалатовая | авг. | оранжевая | 1983 | красная | ||
И | зеленая | сент. | электрик | 1984 | коричневая | ||
К | красная | окт. | белая | 1985 | зеленая | ||
Л | серая | ноябр. | желтая | 1986 | голубая | ||
декаб. | голубая |
Таблица 2. Цветовая маркировка транзистора КТ3107 .
Рис. 2. Места цветовой и кодовой маркировки маломощных среднечастотных и высокочастотных транзисторов в корпусе КТ-26 (ТО-92).
Рис. 3. Места цветовой маркировки транзистора КТ3107 в корпусе КТ-26 (ТО-92).
Рис. 4. Места кодовой маркировки транзисторов в корпусе КТ-27 (ТО-126).
Таблица 3. Цветовая и кодовая маркировки транзисторов.
Код | Тип |
4 | КТ814 |
5 | КТ815 |
6 | КТ816 |
7 | КТ817 |
8 | КТ683 |
9 | КТ9115 |
12 | К.У112 |
40 | КТ940 |
Год выпуска | Код | Месяц выпуска | Код |
1986 | и | Январь | 1 |
1987 | V | Февраль | 2 |
1988 | W | Март | 3 |
1989 | X | Апрель | 4 |
1990 | А | Май | 5 |
1991 | В | Июнь | 6 |
1992 | С | Июль | 7 |
1993 | D | Август | 8 |
1994 | Е | Сентябрь | 9 |
1995 | F | Октябрь | |
1996 | Н | Ноябрь | N |
1997 | 1 | Декабрь | D |
1998 | К | — | — |
1999 | L | — | — |
2000 | М | — | — |
Таблица 4. Кодовая маркировка мощных транзисторов.
Литература: В.М. Пестриков. Энциклопедия радиолюбителя.
Система обозначений транзисторов
Встречаются транзисторы (биполярные), которые имеют старую, введенную до 1964 г. систему обозначений. По старой системе в обозначение транзистора входит буква П и цифровой номер.
По номеру транзистора можно определить, для каких каскадов радиоэлектронной конструкции он разработан. Если перед буквой П стоит буква М, то это значит, что корпус транзистора холодносварочной конструкции. Расшифровка типов транзисторов по номеру следующая:
Низкочастотные (до 5 МГц):
- 1…100 — германиевые малой мощности, до 0,25 Вт;
- 101…201 — кремниевые до 0,25 Вт;
- 201…300 — германиевые большой мощности, более 0,25 Вт;
- 301…400 — кремниевые более 0,25 Вт.
Высокочастотные (свыше 5 МГц):
- 401…500 — германиевые до 0,25 Вт;
- 501…600 — кремниевые до 0,25 Вт;
- 601…700 — германиевые более 0,25 Вт;
- 701…800 — кремниевые более 0,25 Вт.
Например:
- П416 Б — транзистор германиевый, высокочастотный, малой мощности, разновидности Б;
- МП39Б — германиевый транзистор, имеющий холодносварочный корпус, низкочастотный, малой мощности, разновидности Б.
В новой системе обозначений используется буквенно-цифровой шифр, который состоит из 5 элементов:
1-й элемент системы обозначает исходный материал, на основе которого изготовлен транзистор и его содержание не отличается от системы обозначения диодов, то есть Г или 1 — германий, К или 2 — кремний, А или 3 — арсенид галлия, И или 4 — индий.
2-1 элемент — буква Т (биполярный) или П (полевой).
3-1 элемент — цифра, указывающая на функциональные возможности транзистора по допустимой рассеиваемой мощности и частотным свойствам.
Транзисторы малой мощности, Рmах < 0,3 Вт:
- 1 — маломощный низкочастотный, Гф< 3 МГц;
- 2 — маломощный среднечастотный, 3 < frp< 30 МГц;
- 3 — маломощный высокочастотный, 30 < fгр< 300 МГц.
Транзисторы средней мощности, 0,3 < Рmах <1,5 Вт:
- 4 — средней мощности низкочастотный;
- 5 — средней мощности среднечастотный;
- 6 — средней мощности высокочастотный.
Транзисторы большой мощности, Рmах >1,5 Вт:
- 7 — большой мощности низкочастотный;
- 8 — большой мощности среднечастотный;
- 9 — большой мощности высокочастотный и сверхвысокочастотный (frp > 300 Гц).
4-й элемент — цифры от 01 до 99, указывающие порядковый номер разработки.
5-й элемент — одна из букв от А до Я, обозначающая деление технологического типа приборов на группы.
Например: КТ540Б — кремниевый транзистор средней мощности среднечастотный, номер разработки 40, группа Б.
При изготовлении транзисторов используют различные технологические приемы, в результате чего получаются приборы со специфическими особенностями, эксплуатационными свойствами и параметрами. Цоколевка транзисторов, широко используемых радиолюбителями, дана на рис. 1.
Рис. 1. Цоколевка отечественных транзисторов.
Проверка КТ815
Не всегда покупаемые элементы оказываются в рабочем состоянии. Пусть бракованные элементы попадаются не так часто, но любой радиолюбитель или просто покупатель обязан знать, как проверить такой прибор.
Во-первых
, проверить работоспособность КТ815 можно специальным пробником, но рассмотрим проверку обычным мультиметром , так как предыдущий прибор есть далеко не у всех.
Для проверки при помощи мультиметра, прибор нужно перевести в режим прозвонки. Сначала прикладываем отрицательный щуп к базе, а положительный к коллектору. На дисплее должно отобразиться значение от 500 до 800 мв. Затем меняем щупы, поставив на базу положительный, а на эмиттер отрицательный. Значения должны примерно равны прошлым.
Затем нужно проверить обратное падение напряжение
. Для этого поставим сначала отрицательный щуп на базу, а положительный на коллектор. Должны получится единица. В случае с замером на базе и эмиттере, произойдёт то же самое.
Аналоги
Транзистор TIP127 имеет много зарубежных аналогов. Приведем устройства, которые имеют такой же корпус, расположение выводов, электрические и функциональные характеристики: 2N6035, 2N6040, 2N6041, 2N6042, 2SB673, 2SB791, ECG26, TIP125, TIP126. На данные приборы можно менять без внесения изменений в электрическую схему.
Существуют похожие транзисторы, которыми можно заменить рассматриваемый, но некоторые электрические параметры могут отличаться: 2SB1024, 2SB676, BD332, BD334, BDT60B, BDW24C, BDW64C, KSB601, KTB1423, NSP702, TIP627.
Имеется также отечественный аналог TIP127 — КТ8115А.
Рекомендуемая комплементарная пара – TIP122.
Определение вывода базы (затвора)
Наиболее простой способ определить назначение выводов транзистора (цоколевку) — скачать на него документацию. Поиск ведется по маркировке на корпусе. Этот буквенно-цифровой код набирают в строке поиска и далее добавляют «даташит».
Если документацию обнаружить не удается, базу и прочие выводы биполярного транзистора распознают исходя из его особенностей:
- p-n-p транзистор: открывается приложением к базе отрицательного напряжения;
- n-p-n транзистор: открывается приложением к базе положительного напряжения.
- Настраивают мультиметр: красный щуп подсоединяют к разъему со значком «V/Ω» (плюсовой потенциал), черный — к разъему COM (минусовой потенциал), а переключатель устанавливают в режим «прозвонка» или, если такого нет, в сектор измерения сопротивления (значок «Ω») на верхнюю позицию (обычно «2000 Ом»).
- Определяют базу. Красный щуп подсоединяют к первому выводу транзистора, черный — поочередно к остальным. Затем красный подсоединяют ко второму выводу, черный снова по очереди к 1-му и 3-му. Признак того, что красный подсоединен к базе, — одинаковое поведение прибора при контакте черного щупа с другими выводами. Прибор оба раза пискнул или показал на дисплее некое конечное сопротивление — транзистор относится к n-p-n типу; прибор оба раза промолчал или отобразил на дисплее «1» (отсутствие проводимости) – транзистор принадлежит p-n-p типу.
- Распознают коллектор и эмиттер. Для этого к базе подсоединяют щуп, соответствующий типу проводимости: для n-p-n транзистора – красный, для p-n-p транзистора: черный.
Читать также: Газовые водонагреватели проточного типа
Конструкция полевого транзистора с управляющим p-n-переходом и канлом n-типа а) с затвором со стороны подложки; b) с диффузионным затвором
Второй щуп поочередно подсоединяют к другим выводам. При контакте с коллектором на дисплее отображается меньшее значение сопротивления, чем с эмиттером.
Выводы полевого транзистора обычно промаркированы:
Полевые транзисторы чувствительны к статическому электричеству. Из-за этого их выводы при хранении закорачивают фольгой, а перед началом манипуляций надевают антистатический браслет или хотя бы касаются заземленного металлического предмета (приборный шкаф), чтобы снять статический заряд.
Заключение
Информация о маркировочных кодах, содержащаяся в литературе, требует критического подхода и осмысления. К сожалению, красиво оформленный каталог с безукоризненной полиграфией не гарантируют от опечаток, ошибок, разночтений и противоречий, поэтому исходите из данных, что приведены в справочнике о маркировке радиоэлементов.
В заключение хотелось бы поблагодарить источники, которые были использованы для подбора материала к данной статье:
www.mp16.ru
www.rudatasheet.ru
www.texnic.ru
www.solo-project.com
www.ra4a.narod.ru
Предыдущая
ПолупроводникиЧто такое биполярный транзистор
Следующая
ПолупроводникиSMD транзисторы