Герконы

Геркон: что это

Геркон представляет собой два ферромагнитных контакта, которые запаяны в стеклянную герметичную колбу

Для обнаружения открытия дверей, сейфов, окон, ворот, люков и пр. используются магнито-контактные датчики. В основе такого устройства используется герметичный контакт – геркон. Отсюда происходит другое название датчиков – датчики открытия герконовые.

Геркон представляет собой два ферромагнитных контакта, которые запаяны в стеклянную герметичную колбу. При возникновении магнитного поля контакты изменяют свое состояние (замыкаются либо размыкаются). Контакты находятся в инертном газе или вакууме, поэтому в случае возникновения искры они слабо обгорают. Этим обусловлена долговечность герконовых датчиков – срок службы устройств считается бесконечным (исключая случаи разбития и пропускания больших токов). По сравнению с классическими реле, герконы имеют высокое быстродействие и меньшими размерами.

Кроме того, герконовые датчики относятся к классу недорогих изделий, поскольку нет необходимости использовать для контактов тугоплавкие драгоценные металлы. К недостаткам рассматриваемых устройств можно отнести: хрупкость (в условиях ударных нагрузок и сильных вибраций герконы использовать не рекомендуется); появление дребезга при включении, который провоцирует срабатывания в коротком промежутке времени; залипание контактов, приводящее к необходимости замены геркона; при неправильном подключении питания время работы геркона может сократиться.

По типу контактов различают три типа датчиков: нормально-замкнутые, нормально-разомкнутые, переключающие. Отсюда следуют такие основные характеристики датчиков открытия:

  • расстояние замыкания контактов;
  • расстояние между герконом и магнитом, при котором контакты детектора замыкаются;
  • расстояние размыкания контактов;
  • расстояние между герконом и магнитом, при котором контакты детектора размыкаются;
  • расстояние удержания контактов;
  • расстояние между герконом и магнитом, при котором контакты детектора остаются в исходном положении.

Принцип действия

Срабатывание устройства (замыкание, размыкание или переключение контактов) требуется воздействовать на элемент магнитным полем, напряженность которого будет достаточной для коммутации. В качестве источника такого поля может выступать обычный или электромагнит.

Под воздействием силовых линий происходит намагничивание контактов и по преодолению порога упругости они коммутируют цепь.

Принцип работы нормально-разомкнутого геркона

Соответственно, как только на контактную группу перестанет действовать магнитное поле, она вернется в исходное состояние. То есть, функционально контакты помимо своего прямого назначения играют роль магнитопровода и упругого элемента.

Устройства с нормально-замкнутыми контактами действуют несколько иначе. Их ферримагнитные упругие элементы, попадая под воздействие магнитного, поля приобретают одинаковый заряд, что заставляет их отталкиваться, разрывая контакт.

Принцип действия нормально-замкнутого геркона READ Асус трансформер бук т100 как подключить интернет

Иногда в таких коммутаторах только один упругий элемент выполнен из ферримагнитного сплава, в результате приближения магнита он притягивается к нему, отключая цепь.

Подобный принцип задействован в герконах с переключающей группой контактов, в котором два из них изготавливаются из магнитного материала. Под воздействием магнита они притягиваются друг к другу, а немагнитный контакт остается в исходном положении. В результате происходит перекоммутация цепи.

Срабатывание переключающего геркона

Беспроводные модели

Беспроводные модели магнитно-контактных датчиков дверей называются радиогерконами и применяются для охранных сигнализаций, работающих в GSM-диапазоне. Некоторые модели сенсоров оснащаются дополнительными разъемами для подключения дополнительных проводных датчиков. Это дает возможность перекрывать несколько охраняемых зон с помощью открытия и закрытия (окна, люки, ворота).

Беспроводные датчики для дверей имеют свой бесперебойный источник питания и не нуждаются в дополнительном подключении питания. Батарея рассчитана на бесперебойную работу до 5 лет. В случае срабатывания геркона, на открытие подается сигнал на GSM-сигнализацию с последующим оповещением (на телефон) владельца помещения о проникновении злоумышленников на объект.

Разновидности

Классифицируются устройства по следующим группам.

По характеру действия

  • Нормально-разомкнутый контакт. Воздействием магнитного поля определенной напряженности, контакты замыкаются, и по цепи проходит ток. После окончания действия упругие силы возвращают их на место.
  • Нормально-замкнутый контакт. Внешнее магнитное поле должно сформировать такую напряженность, чтобы возникшая сила отталкивания преодолела упругость контактной пары.
  • Переключаемые контакты. В варианте присутствуют три контакта для подключения: два выполнены из магнитного материала, а один не магнитный. Первые два взаимно притягиваются и коммутируют одну из электрических цепей. При отсутствии магнитных полей магнитные контакты (один из них) переключаются на не магнитный и производится перекоммутация цепи.

По типу конструкции

  • Сухие. Это выключатель герконовый с вакуумной колбой и контактами, находящимися в среде инертных газов. При замыкании не исключается дребезг контактов (неконтролируемые наличие или отсутствие соприкосновения их упругих рабочих поверхностей).
  • Мокрые. В таких устройствах на контакты добавляется капелька жидкого металла — ртути. При упругих колебаниях во время замыкания контактов она заполняет пространство между ними и не позволяет разрываться электрической цепи.

Дребезг контактов

Отдельно стоит упомянуть и такое неприятное для цифровой техники (где, в основном, и используются герконы) явление как дребезг контактов. После замыкания наблюдается серия бесконтрольных актов потери и приобретения контакта.

Справедливости ради следует отметить, что такое поведение характерно для большинства механических коммутационных аппаратов. Подключив геркон напрямую к синхронному входу можно получить непредсказуемые результаты.

Меры, направленные против дребезга контактов:

  • Добавка ртути (что чревато ее утечкой при разбитии колбы);
  • Подключение через специальные электронные схемы;
  • Использование демпфирующих фильтров (в отдельных случаях);
  • Программные средства.

Последние реализуются следующими способами:

  • Временная задержка;
  • Подсчет вторичных коммутаций в течение определенного интервала времени;
  • Вычисление длительности текущего состояния.

Защита герконов и герконовых реле

В цепях, где геркон работает с индуктивной нагрузкой, такой как катушка реле, соленоид, трансформатор или миниатюрный мотор, энергия магнитного поля, накопленная в индуктивных компонентах, при коммутации будет испытывать высокие нагрузки по напряжению и току. Это обстоятельство будет негативно сказываться на сроке службы геркона.

Существует несколько способов устранить эту проблему.

  1. Использование шунтирующего диода (в зарубежной литературе он часто встречается под названием flyback или freewheeling diode) возможно в цепях постоянного тока (рисунок 24). Для переменного напряжения придется использовать защитный диод Зенера (он же лавинный диод или TVS-диод), варистор или RC-цепочку (снабберную RC-цепь). Каждый из способов имеет как достоинства, так и недостатки.

Рис. 24. Защита геркона шунтирующим диодом

  1. Использование варисторов или двунаправленных TVS-диодов (рисунок 25). Данные компоненты проводят ток при превышении некоторого порогового значения напряжения. Эти компоненты ставят в параллель с герконом. Рабочие напряжения для TVS-диодов составляют от 2,5 до 600 В, а для варисторов – от 9 до 3500 В. Варисторы обладают значительно большими импульсными мощностями, чем TVS-диоды, но их емкость также значительно выше, и это негативно влияет на контакты геркона при замыкании, поскольку при этом через них протекает больший ток за счет разрядки этой паразитной емкости. Для защиты геркона в цепи переменного напряжения можно использовать только двунаправленный TVS-диод, чтобы он не шунтировал разомкнутый геркон при прямом смещении по напряжению.

Рис. 25. Защита геркона варистором

  1. Использование подавляющих RC-цепей (снабберных цепей).

Существует два варианта подключения снабберной цепи: параллельно геркону (рисунок 26) или параллельно нагрузке (рисунок 27). Первый способ является предпочтительным. Он позволяет снизить напряжение при коммутации и таким образом избежать образования искр. Но в этом случае при коммутации через геркон будет протекать больший ток, обусловленный разрядом конденсатора.

Рис. 26. Защита геркона снабберной цепью, подключенной параллельно геркону

Рис. 27. Защита геркона снабберной цепью, подключенной параллельно нагрузке

Таким образом, мы столкнемся с решением задачи по выбору подходящего по сопротивлению резистора и конденсатора по емкости. Малая емкость будет плохо сглаживать скачки напряжения при переходных процессах , особенно при большой реактивной составляющей нагрузки. А большая повысит стоимость снабберной цепи и при этом увеличит коммутационный ток, что также негативно скажется на долговечности геркона. Для ограничения тока во время замыкания контактов геркона используется резистор. Посчитаем сопротивление:

По закону Ома:

Напряжение на герконе должно лежать в пределах 0,5 от максимального пикового значения Vpk напряжения (1)

(1)

и троекратного его превышения 3*Vpk. Производим расчет по формуле (2):

(2)

где Isw – ток коммутации геркона.

Уменьшение сопротивления резистора в снабберной цепи уменьшит износ контактов геркона от электрических дуг, при этом высокое сопротивление будет положительно влиять на ограничение тока «конденсатор-геркон». Для подбора подходящей емкости рекомендуется начать с 0,1 мкФ. Это очень распространенная емкость и ее цена очень мала. Если этой емкостью не удается избавиться от искр при замыкании контактов геркона, то попробуйте ее постепенно увеличивать до исчезновения искр при коммутации. Параллельно с этим не забывайте про ток коммутации.

Расшифровка маркировки

На принципиальных электрических схемах геркон имеет обозначение круга с нормально разомкнутыми или нормально замкнутыми контактами. Символ напоминает обыкновенную кнопку, заключенную в окружность.

В технической документации геркон имеет маркировку из букв и цифр. Для обозначений большинства подобных приборов справедливо следующее:

  • 1-й символ – наименование детали (МК – магнитоуправляемый контакт);
  • 2-й символ – тип контактов (А – замыкающие, В – размыкающие)
  • 3-й символ – буква «Р» указывается только на приборах со ртутью;
  • 4-й символ – длина колбы в миллиметрах (двухзначное число);
  • 5-й символ – функциональная особенность прибора (1 – малой и средней мощности, 2 – повышенной мощности);
  • 6-й символ – порядковый номер разработки.


Система обозначений герконовых реле Для примера можно разобрать модель МКА-14103:

  • МК – магнитоуправляемый контакт;
  • А – замыкающий;
  • буква «Р» отсутствует, значит без ртути;
  • 14 – длина колбы 14 мм.
  • 1 – малая или средняя мощность;
  • 03 – порядок разработки (бесполезен на практике).

Управление герконом при помощи катушки с постоянным током

Этот способ получил наибольшее распространение при создании герконовых реле. Конструкция этих реле достаточно проста: внутрь катушки с током просто помещается геркон, и при этом не требуется никаких дополнительных пружинок и рычагов, как у обычного реле. Единственный в этом случае недостаток это небольшое количество контактных групп. Если катушку выполнить достаточно толстым проводом, способным пропустить большой ток, то можно получить герконовое токовое реле. Такие реле широко применялись в мощных источниках постоянного тока в качестве датчика системы защиты от перегрузок. Точная настройка уровня срабатывания такого датчика осуществляется резьбовым механизмом, позволяющем плавно перемещать геркон вдоль оси катушки.

Герконы в колбе из зеленого стекла.

Преимущества и недостатки герконов

Как и любая вещь герконы имеют свои недостатки и преимущества. Сначала поговорим, естественно, о преимуществах. По сравнению с обычными коммутирующими контактами герконы имеют чуть ли не в 100 раз большую надежность по сравнению с обычными открытыми контактами. Эта надежность обусловлена более высоким сопротивлением изоляции (достигает десятков МегаОм), и большей электрической прочностью: пробивное напряжение у некоторых типов герконов достигает нескольких десятков киловольт. Сравнительные характеристики герконов приведены в таблице ниже:

Будет интересно Варисторы – что это такое, принцип действия, характеристики и параметры.

Неоспоримым преимуществом герконов является их быстродействие: у некоторых моделей герконов частота коммутации достигает 1000Гц, а скорость срабатывания и отпускания находится в пределах (0,5 – 2,0мс) И (0,2 – 1,0мс) соответственно. Срок службы некоторых герконов доходит до 4 – 5 млрд. срабатываний, что намного выше аналогичного показателя для обычных не защищенных контактов. Также к достоинствам герконов следует отнести легкий способ согласования с нагрузкой а также работа герконов без применения источников электрической энергии.

Недостатки герконов

На фоне достоинств недостатки, наверно, не так уж и велики. Во-первых, это небольшая коммутируемая мощность. Кроме того малое количество контактных групп в одном баллоне а для «сухих» герконов дребезг контактов. К недостаткам же можно отнести также хрупкость стеклянного баллона и в некоторых случаях высокую чувствительность к внешним магнитным полям.

Как подключить геркон.

Рекомендации по использованию

Во время монтажа и дальнейшей эксплуатации герконов следует учитывать такие факторы:

  • кроме наличия посторонних магнитных полей при монтаже герконовых устройств следует избегать источников ультразвука — он оказывает отрицательное влияние на электрические параметры, изменяя их;
  • герконовые устройства не воспринимают ударных нагрузок, так как при этом может нарушиться герметичность, что приведет к утечке защитного газа или нарушению вакуумной среды;
  • технология пайки герконовых устройств имеет особенности, следует четко выполнять инструкцию по пайке от производителя;
  • диапазон температур при которых может работать герконовый переключатель с гарантией заявленных характеристик имеет следующие средние значения: от −60 °С до +120 °С.

Герконы часто используют домашние мастера для изготовления простых схем сигнализации и автоматики для управления вкл/выкл света. Один из примеров подключения геркона вы можете увидеть на изображении ниже.

Герконы: способы управления, примеры использования

Герконы имеют ряд механических и электрических параметров, которые характеризуют их свойства. Эти параметры можно разделить на две большие группы: механические и электрические.

Механические параметры герконов

К механическим параметрам относится магнитодвижущая сила срабатывания. Этот параметр показывает, при каком значении напряженности магнитного поля происходит срабатывание и отпускание контакта. В технической документации это называется как магнитодвижущая сила срабатывания (обозначается Vср) и магнитодвижущая сила отпускания (обозначается Vотп). Немаловажными параметрами геркона, в ряде случаев основными, является скорость его срабатывания и отпускания. Эти параметры измеряются обычно в миллисекундах и обозначаются соответственно как tср и tотп, которые в целом характеризуют быстродействие геркона.

Герконы, имеющие меньшие геометрические размеры обладают более высоким быстродействием. Максимальное число срабатываний, или попросту ресурс, также относится к группе механических параметров. Этот параметр оговаривает, при каком числе срабатываний все свойства геркона, как механические, так и электрические сохраняются в пределах допустимых значений. В технической документации обозначается как Nmax.

Размеры геркона.

Электрические параметры герконов

Эти параметры такие же, как у обычных механических контактов. Сопротивление, измеренное между замкнутыми контактами называется сопротивлением контактного перехода и обозначается как Rк, а сопротивление, измеренное между разомкнутыми контактами есть не что иное, как сопротивление изоляции Rиз. Электрическая прочность геркона. Этот параметр характеризует пробивное напряжение Uпр. Это напряжение в основном определяет качество изоляции между контактами, которое в свою очередь обусловлено качеством вакуума или заполнения колбы инертными газами. Кроме этого пробивное напряжение зависит от величины зазора между контактами и качества их покрытия.

Мощность, коммутируемая герконом определяется в основном его конструкцией: материалом и размерами контактов, а также типом покрытия контактных площадок. В технической документации этот параметр обозначается как Pmax. Емкость, измеренная между разомкнутыми контактами обозначается как Cк. Она зависит лишь от геометрических размеров геркона и расстояния между разомкнутыми контактами. Все технические характеристики основных типов герконовых выключателей приведены в таблице ниже:

Таблица стандартных технических характеристик герконов.

Достоинства герконовых реле:

  1. Полная герметизация контакта позволяет их использовать герконовые реле в различных условиях влажности, запыленности и т. д.
  2. Высокое быстродействие, что позволяет использовать герконовые реле при высокой частоте коммутаций.
  3. Гальваническая развязка коммутируемых цепей и цепей управления герконовых реле.6. Расширенные функциональные области применения герконовых реле.
  4. Надежная работа в широком диапазоне температур

Будет интересно Что такое катушка индуктивности и почему ее иногда называют дроссель

Недостатки герконовых реле:

  1. Восприимчивость к внешним магнитным полям, что требует специальных мер по защите от внешних воздействий.
  2. Хрупкий корпус герконов, чувствительный к ударам.
  3. Малая мощность коммутируемых цепей у герконов.
  4. Возможность самопроизвольного размыкания контактов герконовых реле при больших токах.

Геркон на бумаге.

История изобретения

Советский ученый Петербургского университета В. И. Коваленко, проводя эксперименты с магнитным полем в 1922 году, создал магнитоуправляемые контакты. Это изобретение было зарегистрировано в Советском Союзе и получило патент под номером 466.

Его изобретение представляло собой сердечник из магнитомягкого материала, к которому через изоляторы крепились контакты, сделанные из ферромагнетика, обладающего высокой магнитной проницаемостью. После подачи тока в катушке возникало магнитное поле, намагничивающее контакты и приводя к их замыканию. Если же подача тока прекращалась, поле исчезало, а контакты размагничивались и размыкались.

На то время изобретение не получило практического применения из-за неудобности его использования и низкой надёжности. В 1936 году конструкция геркона была доработана инженерами американской компании Bell Telephone Laboratories. Ими было предложено рабочие контакты устройства поместить в герметично замкнутую колбу. Занимался этой разработкой Уолтер Эллвуд, который в итоге и создал модель устройства. Но из-за сложностей в изготовлении прибор опять же не получил широкого применения.

Использовать прибор начали лишь только в 1941 году, когда американская компания Western Electric известная своими техническими инновациями вместо шумных электромеханических реле в своей телефонной станции не стала использовать геркон.

В середине 60-х годов XX века в СССР массово проводилась телефонизация страны. На основании выводов Министерства связи СССР было решено, что в качестве коммутирующих элементов будет использоваться геркон. Так, на , расположенном в Ленинграде, началось серийное производство устройств. Через шесть лет магнитоуправляемые герконы стали изготавливать и в Рязани, на металлокерамическом заводе.

В начале 1990 года объём производства в СССР достиг 230 млн штук в год, что соответствовало примерно четверти мирового рынка. Сегодня ОАО «Рязанский завод металлокерамических приборов» остался единственным заводом, выпускающим такую продукцию на территории бывшего Советского Союза. В настоящее время ведутся разработки, направленные на снижение размеров, повышение быстродействия, чувствительности и стабильности герконов.

Электронная библиотека

Электротехника и промышленная электроника / Магнитные элементы электронных устройств / 4.6. Магнитоуправляемые герметизированные контакты (герконы)

Автоматизированные системы управления в производственных условиях могут подвергаться воздействию агрессивной окружающей среды в виде пыли, газа, повышенной влажности и других факторов, вызывающих коррозию и преждевременный износ. В электромагнитных реле наиболее уязвимым звеном являются контакты. Герметизация контактов повышает надежность работы реле в целом.

Герметизированные магнитоуправляемые контакты (герконы)

нашли широкое применение в безъякорных реле в качестве концевых и путевых выключателей, датчиков положений и перемещений, координатных переключателей, в охранной сигнализации.

Простейший магнитоуправляемый контакт (МУК) представляет собой стеклянную трубочку (колбочку) с впаянными в нее пермаллоевыми пластинками – контактами, между которыми оставлен рабочий зазор. Колбочка заполнена азотом или другим инертным газом для предотвращения электрокоррозии. Под воздействием внешнего магнитного поля между пластинками возникает тяговое усилие и они смыкаются. Соприкасающиеся поверхности контактов покрыты серебром, золотом, родием.

Некоторые модификации герконов показаны на рис. 4.8: а

– симметричные;б – несимметричные замыкающие;в – переключающие;д – ртутный;е – ртутный плунжерного типа. Возможны и другие модификации, в частности, поляризованные. Поляризацию осуществляют путем размещения внутри колбочки тонких пластинок постоянных магнитов. В ртутных МУК (рис. 4.8,д ) ртуть, смачивая пластину, поднимается по ней к контактирующим частям, обеспечивая высокую частоту переключения. Частотой переключения до 800 Гц обладают ртутные МУК плунжерного типа. Пермаллоевый плунжер перемещается под действием электромагнитного усилия к левому или правому контакту в цилиндрической направляющей, наполненной ртутью. На рис. 4.8,г – МУК дифференциального типа. Он имеет две обмотки – правую и левую.

Рис.

4.8. Конструктивное исполнение магнитоуправляемых контактов

Магнитное поле, управляющее контактами, создается током в обмотке, представляющей соленоид, внутри которого размещен МУК, или постоянным магнитом.

По сравнению с обычными реле герконы имеют ряд преимуществ: высокая надежность коммутации в любой среде, длительный срок службы (до 108 – 109 срабаты

ваний), высокое быстродействие, вибрационная и радиационная устойчивость, низкая стоимость, малые габариты и вес.

Не лишены они и недостатков: малое число контактных групп, одна пара контактов в одной колбочке, дребезги при замыкании, большая, чем у обычных реле, намагничивающая сила срабатывания из-за нескольких воздушных промежутков.

Для увеличения числа контактов в одном соленоиде размещают несколько герконов, но недостаток их в том, что срабатывают они неодновременно из-за различия магнитных сопротивлений, т.к. МУК, сработавший первым, шунтирует магнитные пути других МУК.

Одна из разновидностей МУК – ферриды

. ЭтоМУК с памятью . Если МУК снабжен внешним магнитным сердечником с прямоугольной петлей гистерезиса, то при подаче на его обмотку импульса тока МУК срабатывает и остается в таком положении до подачи импульса обратной полярности. Сердечник может располагаться внутри колбочки. Для размыкания контактов нужно подать строго определенный ток обратной полярности. При большом токе сердечник перемагнитится в противоположном направлении и контакты снова замкнутся. Для предотвращения этого ферриды обычно снабжают двумя обмотками: рабочей и поляризующей.

Сейчас выпускаются МУК с внутренним объемом колбочки не более 2,5 мм3 на контакт. Они сравнимы по размерам с интегральными схемами. В качестве контактов используются пленочные пермаллоевые покрытия. Минимальный коммутирующий ток до 10-12 А, напряжение срабатывания (1,3 — 23) В, отпускания (1,15 — 3) В. Ведутся разработки по созданию мощных МУК. Уже выпускаются МУК на максимальную коммутируемую мощность до 250 Вт, коммутируемый ток до 4 А и напряжение до 10000 В.

Цифровые датчики: высокая надежность в дискретных приложениях

Во многих приложениях используется цифровой выход для определения, находится ли объект в определенной позиции. Например, датчик может быть использован для проверки наличия защитного ограждения на механизме. Если ограждение находится на своем месте, машина работает. Если же это не так, машина работать не будет. В этом типе дискретного приложения требуется цифровой выход. В приложениях с магнитными датчиками исключительную надежность обеспечивают следующие цифровые датчики:

Герконовые датчики: преимущества и применение

Герконовый датчик представляет собой электрический ключ, который для работы не требует питания, в отличие от интегральной схемы. Выводы заводятся в герметизированную стеклянную колбу, в которой находятся контактные пластины. В результате ключ в герконе обладает высокой надежностью, поскольку он не подвержен влиянию влаги или других факторов окружающей среды. Поэтому контакты не будут окисляться и с нагрузками логического уровня будут продолжать работать в течение миллионов циклов.

Герконовые датчики очень популярны среди приложения с питанием от батареи. Они используются в автомобильных составляющих безопасности, например, обнаружение защелкивания застежки ремня безопасности и обнаружение столкновения. Поскольку герконы могут переключать нагрузки и постоянного, и переменного напряжения, их часто выбирают для цифровых приложений типа «вкл/выкл», например, детектирование закрытия/открытия двери в системах безопасности и в бытовой технике.

Например, дверь холодильника использует геркон для определения закрытия двери. Магнит крепится к двери, а герконовый датчик закрепляется на неподвижной раме, скрытой за внешней стенкой холодильника. Когда дверь открыта, герконовый датчик не может обнаружить магнитное поле, что заставляет включиться светодиодную лампу. Когда дверь закрывается, датчик обнаруживает соответствующее магнитное поле, и светодиод выключается. В этом приложении микроконтроллер внутри блока управления получает сигнал от геркона, а затем включает или выключает светодиод.

Рисунок 1 – Геркон в двери холодильника используется для включения и выключения светодиода

Цифровые датчики Холла: преимущества и применение

Цифровые датчики Холла используют полупроводниковые приборы и их выходное напряжение изменяется в зависимости от изменения магнитного поля. Эти датчики объединяют в семе чувствительный элемент с эффектом Холла и электрическую схему, обеспечивающую цифровой выходной сигнал типа «вкл/выкл», что соответствует изменению магнитного поля без использования каких-либо движущихся частей. Использование датчика на основе эффекта Холла ограничено приложениями с низкими постоянными напряжением и током. В отличие от геркона, устройство на основе эффекта Холла содержит в себе активную схему, поэтому оно потребляет небольшое количество тока в любое время.

Цифровые датчики Холла обеспечивают высокую надежность и для точных требований к измерениям могут быть запрограммированы на активацию при заданной величине магнитного поля.

Эти датчики очень популярны в высокоскоростных измерительных схемах таких бытовых машин, как стиральные машины и сушилки. В этом применении вращающийся 16-полюсный кольцевой магнит активирует чип датчика Холла при каждом прохождении красного (северный полюс) сегмента и деактивирует его при каждом прохождении белого (южный полюс) сегмента, что дает очень точный сигнал, соответствующий скорости. Цифровые датчики Холла особенно полезны в автомобильных приложениях безопасности, таких как определение защелкивания застежки ремня безопасности и определение скорости зубчатой передачи.

Рисунок 2 – Схема применения датчика Холла для измерения скорости

Достоинства и недостатки

Для сравнения возьмем электромагнитные реле с катушками и сердечником. В дополнение приведем некоторые общие положительные и отрицательные качества.

Плюсы

  • Габариты герконовых выключателей значительно меньше из –за отсутствия механики для перемещения контактов и самого сердечника.
  • Большинство технических характеристик таких, например, как электрическая прочность, напряжение пробоя на несколько порядков выше, чем у электромагнитных реле.
  • Быстродействие герконовых выключателей значительно превосходит аналогичный параметр обычных реле.
  • Во время работы отсутствует шум, характерный при функционировании электромагнитных реле.
  • Ресурс работы герконов многократно превышает долговечность электромагнитных реле.
  • Герконы не требуют согласования к виду нагрузки.
  • Для управления электромагнитным реле требуется наличие электроэнергии, герконовыми устройствами возможно управлять без ее использования.

Минусы

  • Коммутируемая нагрузка имеет низкие показатели по мощности.
  • В колбе помещается незначительное количество контактов.
  • В сухом герконе процесс замыкания сопровождается дребезгом контактов. Мокрые герконы избавлены от этого технического явления.
  • Геркон имеет большие размеры для компактных современных электронных схем.
  • Стеклянная колба не отличается достаточной прочностью, может разрушиться от вибрационных явлений, возникающих в работе оборудования с герконовыми устройствами.
  • Требуется наличие защитного экрана, чтобы устранить влияние на нормальное функционирование геркона внешних магнитных полей.

Принцип работы

И когда мы знаем, что такое геркон, разберем принцип его работы. Ближайшей аналогией по отношению к нему можно считать выключатель, потому что его конструкция представляет следующее: реле из двух токопроводящих сердечников, которые расположены в герметичном пространстве с инертной средой. Последнее необходимо для избавления от окисления.

Непосредственное же замыкание производится посредством размещения вокруг колбы управляющей обмотки. В нее поступает постоянный ток и, после того как подается питание, обмотка создает магнитное поле. Оно же оказывает действие на сердечники, что в итоге приводит к замыканию — это полный принцип действия геркона.

Следовательно, что при отключении питания нивелируется магнитный поток, а контакты размыкаются. Так надежность геркона, благодаря которой это устройство до сих пор имеет популярность, обусловлена никелированным трением контактов. Помимо, отсутствие какого-либо воздействия в незамкнутом состоянии фактически дает возможность моментального замыкания при необходимости.

Использование постоянных магнитов

Существует также альтернатива в виде использования постоянных магнитов. Их также еще называют магнитными герконовыми датчиками или поляризованными. Вот как он работает: электромагнит заряжает контакты одним и тем же потенциалом, что приводит к их отталкиванию друг от друга. Это в свою очередь размыкает цепь. Нюанс также в том, что в них три контакта: один стационарный и не имеет никакого воздействия магнита, а два других произведены из ферромагнитного сплава за счет чего производится замыкание и размыкание при воздействии магнитного поля.

Герконы КЭМ

Герконы КЭМ – герметизированные магнитоуправляемые контакты – широко применяются в коммутационных изделиях. Герконы серий КЭМ-1 и КЭМ-2 являются замыкающими, т.е. в нормальном состоянии контакты разомкнуты, а под воздействием магнита замыкаются. Герконы КЭМ-3 – переключающие, в нормальном состоянии подвижный контакт замыкает одну цепь, а под воздействием магнита он переключается на другую цепь. Герконы КЭМ предназначены для коммутации электрических цепей постоянного и переменного тока частотой до 10 кГц с активной и индуктивной нагрузкой напряжением до 300 В, силой тока до 4 А и коммутируемой мощностью до 30 Вт (ВА). Герконы КЭМ предназначены для пайки в отверстия платы. Герконы делятся на четыре группы чувствительности – 0, А, Б и В – по МДС (магнитодвижущей силе срабатывания). Герконы КЭМ находят свое применение в таких коммутационных изделиях, как магнитные выключатели, датчики безопасности, реле и измерительные приборы. Широкое использование герконов связано с кругом преимуществ этих компонентов: — благодаря полностью герметичному контакту (стеклянному корпусу) герконы могут применяться в условиях повышенной влажности и запыленности в широком диапазоне рабочих температур, от -60 до +150°С — высокое быстродействие, от 0.5 до 1.5 мс — малая потребляемая мощность, о 50 до 200 мВт — полная гальваническая развязка цепей управления и нагрузок — низкое сопротивление контактов, 0.1-0.5 Ом — высокая механическая износостойкость: они выдерживают нагрузку до 500 g, а также высокую вибрацию — долгий срок службы, большой ресурс работы и количеств срабатываний, до 10 млн. срабатываний

Система обозначений
КЭМ-1 гр. А
1 2
  • 1. Серия геркона
  • 2. Группа чувствительности: 0, А, Б, В
Габаритные размеры

Технитеские параметры
Серия КЭМ-1 КЭМ-2 КЭМ-3
Коммутируемая мощность, Вт 30 10 7,5 Вт перем. 30 Вт пост. 7,5 ВА акт. индук. нагрузка
Диапазон коммутируемых токов, А 10-6…2,0 10-4…0,5 5 ·10-6…1,0 пост. 5 ·10-6…0,25 перем.
Диапазон коммутируемых напряжений, В 5 · 10-2…300 5 · 10-2…130 перем. 5 · 10-2…180 пост. 5 ·10-2…125
Род тока пост./перем. пост./перем. пост./перем.
Род нагрузки актив./индук. активная актив./индук.
Кол-во срабатываний 104…108 5·104…1·107 103…106
Частота срабатываний в секунду 50 15…25 21…42 32…64 1…50
МДС срабатывания, А Группа А 50…72 Группа Б 68…92 Группа В 88…120 100 Группа 0 30…50 Группа 0А 25…75 Группа А 42…66 Группа Б 58…83 Группа В 75…100 Группа АД 35…75
Кв 0.3…0.9 0.3…0.9 0.3…0.90
Время срабатывания, мс 2.0 1.0 1.5
Время отпирания, мс 0.8 0.5 2.0
Электрическая прочность изоляции, В 500/700 180/250 70-200/100-280
Сопротивление, Ом 0.1 0.25 0.5
Сопротивление изоляции, Ом 1 · 109 1 · 109 2 ·109 НЗ 1 ·109 НР
Резонансная частота, кГц 0,7 2,4 3
Условия поставки ОДО. 360.037 ТУ ОДО. 360.038 ТУ ОДО. 360.003.ТУ

Недостатки

В некоторых случаях магнитное управление может играть отрицательную роль, ведь система становится чувствительна к паразитным магнитным явлениям. В таких случаях устройство приходится экранировать.

Другая положительная сторона — герметичность, оборачивается недостатком в виде хрупкости колбы. Герконы неустойчивы к сильным вибрациям.

Коммутация имеет конечную скорость, что довольно критично для быстродействующих устройств.

Порой встречается залипание контактов. Этому есть два объяснения: деформация контактов при пропускании через них постоянного тока, приводящая к тому, что они цепляются друг за друга (один разрушается — другой восстанавливается), и их взаимное притирание.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Электрика
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: