Более мощный ИБП с отдельным трансформатором
Они позволяют определить напряжение и необходимое число витков. Трансформатор дорабатывается, блок снова испытывается, и после этого его можно применить как компактный источник питания, который намного меньше аналога на основе обычного трансформатора 220 В со стальным сердечником.
Чтобы увеличить мощность источника питания, надо применить отдельный трансформатор, сделанный аналогично из дросселя. Его можно извлечь из лампочки большей мощности, сгоревшей полностью вместе с полупроводниковыми изделиями балласта. За основу берется та же схема, которая отличается присоединением дополнительного трансформатора и некоторых других деталей, изображенных красными линиями.
Выпрямитель, показанный на изображении, содержит меньше диодов по сравнению с выпрямительным мостом. Но для его работы потребуется больше витков вторичной обмотки. Если они не вмещаются в трансформатор, надо применить выпрямительный мост. Более мощный трансформатор делается, например, для галогенок. Кто использовал обычный трансформатор для системы освещения с галогенками, знает, что они питаются достаточно большим по величине током. Поэтому трансформатор получается громоздким.
Если транзисторы разместить на радиаторах, мощность одного блока питания можно заметно увеличить. А по весу и габаритам даже несколько таких ИБП для работы с галогенными светильниками получатся меньше и легче одного трансформатора со стальным сердечником равной им мощности. Другим вариантом использования работоспособных балластов экономок может быть их реконструкция для светодиодной лампы. Переделка энергосберегающей лампы в светодиодную конструкцию очень проста. Лампа отсоединяется, а вместо нее подключается диодный мост.
На выходе моста подключается определенное количество светодиодов. Их можно подключить между собой последовательно
Важно, чтобы ток светодиода равнялся току в КЛЛ. можно назвать ценным полезным ископаемым в эпоху светодиодного освещения
Они могут найти применение даже после завершения своего срока службы. И теперь читатель знает детали этого применения.
Китайские шуруповёрты отличаются низкой ценой и плохими аккумуляторами, приходящими в негодность после первого года эксплуатации. Покупка нового аккумулятора не имеет смысла, поэтому встаёт вопрос о питании от сети. Данный блок питания состоит из доступных деталей и полностью помещается в корпусе аккумулятора.
В основе лежит плата от энергосберегающей лампы, импульсного трансформатора и выходного дросселя от компьютерного блока питания. У меня были две одинаковые платы от ламп 95 Вт, однако у обоих оказались сгоревшими полевые транзисторы, поэтому пришлось их менять. Схема лампы представлена на рисунке:
Детали, отмеченные красным цветом необходимо выпаять. С выходного дросселя от компьютерного блока питания L3 (смотри схему ниже) убираем все обмотки кроме той, которая намотана самым толстым проводом. Впаиваем новые детали согласно схеме:
Входную цепочку из предохранителя и термистора можно не ставить. Конденсатор С1 ставим максимально большей ёмкости. Если ваша энергосберегающая лампа сделана на биполярных транзисторах (чаще всего 13003, 13005), то их необходимо заменить на более мощные (13007, 13009). Так же возможно придётся заменить диодный мост D1-D4 и индуктивность L1. Чтобы избежать данных переделок необходимо брать плату от лампы как можно большей мощности.
Выходные диоды шотки D12, D13 (10А 100В) взяты с запасом, так как в ходе испытаний вышли из строя диоды от компьютерного блока питания mospec s20c40c. Автомобильная лампа EL используется в качестве подсветки, индикатора включения и нагрузки.
Полевые транзисторы и диоды шотки снабжены радиаторами.
Работа шуруповёрта представлена на видео:
https://www.youtube.com/embed//Hf-LGVylRHU
Тестирование ИБП
Но перед присоединением к сети 220 В последовательно с нашим блоком, переделанным своими руками из лампы, обязательно соединяется мощный резистор. Это мера соблюдения безопасности. Если через импульсные транзисторы в блоке питания потечет ток короткого замыкания, резистор его ограничит. Очень удобным резистором в таком случае может стать лампочка накаливания на 220 В. По мощности достаточно применить 40–100-ваттную лампу. При коротком замыкании в нашем устройстве лампочка будет светиться.
Последовательное соединение платы с лампочкой перед подачей напряжения 220 В
Далее присоединяем к выпрямителю щупы мультиметра в режиме измерения постоянного напряжения и подаем напряжение 220 В на электрическую цепь с лампочкой и платой источника питания. Предварительно обязательно изолируются скрутки и открытые токоведущие части. Для подачи напряжения рекомендуется применить проводной выключатель, а лампочку вложить в литровую банку. Иногда они при включении лопаются, а осколки разлетаются по сторонам. Обычно испытания проходят без проблем.
Самостоятельное изготовление блока питания
ИБП можно изготовить своими руками. Для этого понадобятся небольшие изменения в перемычке электронного дросселя. Далее выполняется подключение к импульсному трансформатору и выпрямителю. Отдельные элементы схемы удаляются ввиду их ненужности.
Если блок питания не слишком высокомощный (до 20 Вт), трансформатор устанавливать необязательно. Хватит нескольких витков проводника, намотанных на магнитопровод, расположенный на балласте лампочки. Однако осуществить эту операцию можно только при наличии достаточного места под обмотку. Для нее подходит, к примеру, проводник типа МГТФ с фторопластовым изоляционным слоем.
Провода обычно нужно не так много, поскольку практически весь просвет магнитопровода отдается изоляции. Именно этот фактор ограничивает мощность таких блоков. Для увеличения мощности потребуется трансформатор импульсного типа.
Импульсный трансформатор
Отличительной характеристикой такой разновидности ИИП (импульсного источника питания) считается возможность его подстраивания под характеристики трансформатора. Кроме того, в системе нет цепи обратной связи. Схема подключения такова, что в особенно точных подсчетах параметров трансформатора нет необходимости. Даже если будет допущена грубая ошибка при расчетах, источник бесперебойного питания скорее всего будет функционировать.
Межобмоточный изоляционный слой чаще всего выполнен из бумаги. В некоторых случаях на обмотку нанесена синтетическая пленка. Однако даже в этом случае следует дополнительно обезопаситься и намотать 3-4 слоя специального электрозащитного картона. В крайнем случае используется бумага толщиной от 0,1 миллиметра. Медный провод накладывается только после того, как предусмотрена данная мера безопасности.
Что касается диаметра проводника, он должен быть максимально возможным. Количество витков во вторичной обмотке невелико, поэтому подходящий диаметр обычно выбирают методом проб и ошибок.
Выпрямитель
Чтобы не допустить насыщения магнитопровода в источнике бесперебойного питания, используют исключительно двухполупериодные выходные выпрямители. Для импульсного трансформатора, работающего на уменьшение напряжения, оптимальной считается схема с нулевой отметкой. Однако для нее нужно изготовить две абсолютно симметричные вторичные обмотки.
Для импульсного источника бесперебойного питания не подойдет обычный выпрямитель, функционирующий согласно схеме диодного моста (на кремниевых диодах). Дело в том, что на каждые 100 Вт транспортируемой мощности потери составят не менее 32 Вт. Если же изготавливать выпрямитель из мощных импульсных диодов, затраты будут велики.
Наладка источника бесперебойного питания
Когда собран блок питания, остается присоединить его к наибольшей нагрузке, чтобы проверить — не перегреваются ли транзисторы и трансформатор. Температурный максимум для трансформатора — 65 градусов, а для транзисторов — 40 градусов. Если трансформатор чересчур нагревается, нужно взять проводник с большим сечением или же увеличить габаритную мощность магнитопровода.
Перечисленные действия можно выполнить одновременно. Для трансформаторов из дроссельных балансов нарастить сечение проводника вероятнее всего не удастся. В этом случае единственный вариант — сокращение нагрузки.
ИБП высокой мощности
В некоторых случаях стандартной мощности балласта не хватает. В качестве примера приведем такую ситуацию: есть лампа мощностью 24 Вт и необходим ИБП для зарядки с характеристиками 12 B/8 A.
Для реализации схемы понадобится неиспользуемый компьютерный БП. Из блока достаем силовой трансформатор вместе с цепью R4C8. Данная цепочка защищает силовые транзисторы от чрезмерного напряжения. Силовой трансформатор соединяем с электронным балластом. В этой ситуации трансформатор заменяет дроссель. Ниже изображена схема сборки источника бесперебойного питания, основанная на лампочке-экономке.
Из практики известно, что данная разновидность блоков дает возможность получать до 45 Вт мощности. Нагревание транзисторов находится в рамках нормы, не превышая 50 градусов. Чтобы полностью исключить перегревание, рекомендуется вмонтировать в транзисторные базы трансформатор с большим сечением сердечника. Транзисторы ставят непосредственно на радиатор.
Импульсный паяльник: устройство прибора
Импульсный паяльник необходим для монтажа (демонтажа) элементов электротехнических и электронных изделий. Нагревательным элементом является жало, которое изготовлено из медной проволоки (диаметр 1−3 мм) с покрытием иными металлами. Разогрев жала происходит за счет пропускания через него тока низкого напряжения. Паяльник потребляет немного электроэнергии, т. к. ток через жало проходит исключительно во время пайки. Устройство имеет преобразователь сетевого напряжения с частотой 18−40 кГц. Вторичная (силовая) обмотка соединяется с токосъемниками жала.
Основное отличие импульсного от обычного паяльника — то, что его не нужно всегда держать включенным для поддержания температуры. Нагревание жала осуществляется в течение нескольких секунд. Вот именно из-за этого устройство большую часть времени не расходует электричество.
Разновидности паяльников:
- Индукционный;
- Керамический;
- Импульсный;
- Аккумуляторный.
Пробный пуск
Собрав схему согласно нашим рекомендациям, можно приступать к пробным испытаниям. Обычно при этом используется обычная лампочка накаливания, мощностью, соответствующей изготовленному блоку питания.
Пробный пуск
Подключённая к цепи, она служит чем-то сродни предохранителя стабилизатора и оберегает блок при перепадах токов и напряжения. Если всё хорошо, лампа особо никак не влияет на работу платы (из-за низкого сопротивления). Зато при скачках высоких токов сопротивление лампы возрастает, нивелируя негативное воздействие на электронные компоненты схемы. И даже если вдруг лампа сгорит — её будет не так жалко, как собственноручно собранный импульсный блок, над которым вы корпели несколько часов. Самая простая схема проверочной цепи выглядит так.
Запустив систему, понаблюдайте, как меняется температура трансформатора (или обмотанного «вторичкой» дросселя). В том случае если он начинает сильно нагреваться (до 60ºС), обесточьте цепь и попробуйте заменить провода обмотки аналогом с большим сечением, или же увеличьте количество витков. То же самое касается и температуры нагрева транзисторов. При существенном её росте (до 80ºС) следует снабдить каждый из них специальным радиатором. Вот в принципе и всё. Напоследок напоминаем Вам о соблюдении правил безопасности, так как на выходе напряжение очень высокое. Плюс ко всему компоненты платы могут сильно нагреваться, никак не меняясь при этом внешне.
Также не советуем использовать такие импульсные блоки при создании зарядных устройств для современных гаджетов с тонкой электроникой (смартфонов, электронных часов, планшетов и т.д.). Зачем так рисковать? Никто не даст гарантию что «самоделка» будет работать стабильно, и не угробит дорогостоящее устройство. Тем более что подходящего добра (имеется в виду готовых зарядок) более чем предостаточно на рынке, и стоят они совсем недорого. Такой самодельный блок питания может безбоязненно использоваться для подключения лампочек разных видов, для запитки LED-лент, несложных электроприборов, не столь чувствительных к скачкам токов (напряжения).
Надеемся, Вы смогли осилить весь приведённый материал. Возможно, он вдохновит вас попробовать создать нечто подобное самостоятельно. Пусть даже первый блок питания, сделанный вами из платы лампочки, сначала и не будет реальной рабочей системой, зато Вы приобретёте базовые навыки. И главное – азарт и жажду творчества! А там, глядишь, и получится сделать из подручных материалов полноценный блок питания для светодиодных лент, весьма популярных сегодня. Удачи!
Ремонт балласта
В первую очередь необходимо произвести визуальный осмотр. В большинстве случаев с его помощью можно определить сгоревшие компоненты, например вздутые емкости, разрушенные корпуса транзисторов, следы подгорания и т.д. Заметим, что замена таких элементов может не дать результата, в этом случае потребуется проверка всей цепи.
Если проблемы не обнаружены, необходимо проверить основные элементы. Для этого желательно иметь схему пускорегулирующего устройства.
Схема балласта
Приведенная схема является типовой, она используется практически во всех балластах с небольшими изменениями.
Рисунок 5. Схема электронного балласта
Обозначения:
- Сопротивления: R1 – от 1 до 30 Ом (играет роль предохранителя); R2 и R3– от 220 кОм до 510 кОм; R4 и R5– от 1 до 2,7 Ом; R6 и R7– от 8,2 до 20 Ом.
- Емкости: С1 – 0,1 мкФ; С2 – от 1,5 мкФ до 10 мкФ 400В; С3 – 0,01 мкФ; С4 – от 0,033 мФ до 0,1 мкФ 400В; С5 – от 1800 пФ до 3900 пФ 650В.
- Диоды: VD1-VD5 – 1N4005; VD6 и VD7 – 1N4148.
- Динистор VS1 – DB3 (в осветительных приборах малой мощности может не использоваться).
- Транзисторы: VT1, VT2 – 13003 (вполне возможны другие аналоги).
Катушка L1 совместно с емкостью С1 играет роль фильтра помех, во многих недорогих китайских приборах вместо нее запаяна перемычка.
Катушка L2 может иметь от 250 до 350 витков, которые намотаны проводом Ø 0,2 мм на ферритовый сердечник, имеющий Ш-образную форму. По внешнему виду напоминает небольшой трансформатор.
Трансформатор Т1 в каждой обмотке от 3 до 9 витков, как правило, используется провод Ø 0,3 мм. В качестве магнитопровода используется ферритовое кольцо.
Предохранитель: FU1 – 0.5 A. В большинстве изделий, произведенных в Китае он не устанавливается. В таких случаях роль предохранителя выполняет низкоомное сопротивление R1. Именно оно сгорает в первую очередь. Как правило, замена не дает результата, поскольку его выход из строя является следствием неисправности, а не причиной.
Поиск неисправностей в балласте
Алгоритм действий будет следующим:
Начинать нужно с замены предохранительного резистора, при проблемах с балластом, он практически всегда выгорает.Предохранительный резистор отмечен красным
После замены начинаем поиск неисправных компонентов. В приведенной схеме чаще всего из строя выходят емкости, именно с них необходимо начинать проверку. Для этого вооружаемся паяльником и выпаиваем конденсаторы С3-С5 (см. схему на рис. 5). После этого проверяем их при помощи мультиметра (как проверить различные электронные компоненты можно узнать на нашем сайте).
Соответственно, если при внешнем осмотре обнаружилось вздутие C2, велика вероятность выхода из строя одного или нескольких диодов моста.
- Если перечисленные деталями исправны, то следует проверить транзисторы. Их придется проблема выпаивать, поскольку обвязка не даст точно провести измерения. Как показывает практика, в ходе вышеописанных этапов тестирования неисправность будет обнаружена.
- Обнаружив неисправность, необходимо протестировать работу осветительного прибора, подав питание на цоколь. Делать это нужно аккуратно, поскольку на элементах платы присутствует высокое напряжение.
- https://220.guru/elektrooborudovanie/komponenty/blok-pitaniya-iz-energosberegayushhej-lampy.html
- https://finelighting.ru/texnologii-i-normy/sistemy/bloki-pitaniya/vtoraya-zhizn-kak-izgotovit-energosberegayushhix-lamp.html
- https://rusenergetics.ru/remont/blok-pitaniya-energosberegayushhej-lamp
- http://proosveschenie.ru/dlya-doma-i-kvartir/skhema-ehnergosberegayushhejj-lampy.html
- https://www.asutpp.ru/remont-energosberegayushhej-lampy-svoimi-rukami.html
Поделки своими руками для автолюбителей
Люминесцентные лампы, или по-другому экономки, долгое время успешно использовались во многих домах. Поэтому найти старую, пусть даже и в нерабочем состоянии эконом-лампу в запасниках не проблема.
Хочу поделиться идеей, как переделать блок питания от газоразрядной лампы, усовершенствовать его. Новый, переделанный, блок питания может использоваться, как основа для зарядного устройства, блока питания усилителя, т. е. везде, где есть необходимость источника питания.
Чтобы лучше разобраться в сути переделки, скажу несколько слов о самой газоразрядной лампе, принципе ее работы. Любая газоразрядная лампа, а также обычная экономка, для своей работы требует высокого напряжения, в несколько раз выше, чем напряжение в сети.
В такой лампе предусмотрен встроенный импульсный преобразователь, балласт. Обычно, для этого используют полумостовой автогенераторный преобразователь. Схема такого блока питания простейшая, в ней даже нет дополнительной защиты, кроме предохранителя. Но между тем, такая система надежно работает. Что касается цели запуска, то она строится на базе симметричного диака.
Схема, аналогична принципам электронного трансформатора, одно отличие – используется накопительный дроссель, а не понижающий трансформатор. Так вот, хочу доступно объяснить, как из блока питания эконом лампы получить полноценный импульсный источник питания понижающего типа – это, во-первых. Во-вторых, рассказать, как обеспечивается гальваническая развязка от сети для безопасного использования.
Главное что необходимо сделать – доработать выход при помощи диодного выпрямителя и сглаживающей емкости.
Итак, приступаем к работе:
1. Берем экономку любой мощности, я взял рабочую лампу на 125 Вт. Вскрыл лампу, изъял блок питания. Колба не понадобится, поэтому ее надо утилизировать. 2. Далее сверяемся со схемой балласта. В принципе они одинаковые, но могут быть дополнены какими-нибудь компонентами.
Что мы видим на плате? Массивный дроссель – его то и надо выпаять. Используем для этого паяльник.
3. Для дальнейшей работы нам понадобится блок питания от компьютера (можно нерабочий), точнее, его силовой импульсный трансформатор. Достаем его.
4. Смотрим дальше на плату. Там имеется небольшое колечко – трансформатор обратной связи по току.
Он включает в себя 3 обмотки:
2 обмотки – это задающие,
а третья – обмотка обратной связи, которая содержит всего 1 виток. Подключаем трансформатор, взятый от блока питания ПК. Как это сделать, смотрите на схему.
Объясню подробнее: 1 из выводов сетевой обмотки подсоединяем к обмотке обратной связи.
Со вторым выводом поступаем так: подключаем к точке соединения двух конденсаторов полумоста.
Можно сказать процесс завершен. Нагружаю выходную обмотку трансформатора и убеждаюсь в том, что напряжение присутствует.
Напоследок, несколько советов:
— для начального запуска балласта использовать страховочную лампочку.
— В том случае, когда блок питания требуется малой мощности, возможен более простой принцип устройства: не нужен никакой трансформатор, а вторичную обмотку выполнить на сам дроссель.
— Не лишним будет установление силовых транзисторов на радиаторы. Естественно, что при рабочей нагрузке они нагреваются.
— Вторичная обмотка трансформатора обеспечивает любое напряжение, потребуется лишь его перемотка, но все зависит от целей использования.
Так, когда блок будет использоваться в зарядном устройстве автомобильного аккумулятора, перемотка не потребуется. Если же он делается для выпрямителя, то нужно взять импульсные диоды.
Вот и все, что хотел рассказать сегодня. Замечу, что вариантов переделки блока из эконом лампы множество, это лишь один из них.
Автор; АКА КАСЬЯН
Популярное;
- Зарядное устройство из эконом лампы
- Простой лабораторный блок питания из старого компьютерного блока питания.
- Зарядное устройство из БП от компьютера
- Простой блок питания для гаража
- Как зарядить АКБ авто от блок питания ноутбука, схема
- Преобразователь напряжения с 12 на 220 вольт из блока розжига ксенона.
- Гаражный блок питания для ремонтных работ
- Обогреватель для автомобиля с вентилятором
Заключение
В любом случае способов перехода на более экономичное освещение предостаточно. Светодиодная лампа, изготовленная на основе энергосберегающей, поможет сэкономить ваши деньги, а сам процесс особенно понравится тем, кто обладает развитым техническим мышлением.
Драйвер для светодиода из энергосберегающей лампы легко можно сделать за час, если есть желание.
Если у Вас завалялась старая энергосберегающая лампа, а электронный балласт в ней рабочий, то из него довольно просто можно сделать своими руками драйвер для питания светодиодов. У Вас возникнет вопрос, а как проверить работоспособность балласта? При разборке лампы нужно самой лампы при помощи мультиметра и, если хоть одна из них горелая, то очень велика вероятность того, что балласт находится в рабочем состоянии, а если обе спирали целые, то наверняка есть неисправность в деталях балласта и её нужно устранять.
Если всё валяется в разобранном состоянии, то нужно просто очень внимательно осмотреть все детали балласта и дорожки печатной платы на предмет повреждений. На то, что детали потемневшие не обращайте внимания, просто они работают в очень жёстких температурных условиях. Если всё в порядке, то можно приступать к сборке драйвера для светодиодов. Проверять все детали балласта не имеет смысла, так как Вы затратите очень много времени на выпаивание и проверку деталей. Гораздо быстрее будет собрать схему для питания светодиодов от энергосберегающей лампы и с её помощью проверить работоспособность балласта.
Начинать нужно с припайки перемычек из проводков, как на фотографии и выпаивания дросселя. На дроссель нужно намотать дополнительную обмотку из медного провода.
После того как Вы выпаяли дроссель, его нужно разобрать (разъединить магнитопровод), для того чтобы легко намотать провод
Первым делом осторожно снимаем клейкую ленту с поверхности магнитопровода и отлаживаем её в сторонку, так как она нам ещё понадобится для обратной сборки. Осторожно пробуем руками разъединить половинки магнитопровода (он очень хрупкий и легко ломается, так что не прилагайте больших усилий)
Если не получается, то осматриваем все поверхности и, если есть потёки лака, которые приклеили магнитопровод к катушке, то подрезаем и удаляем их простым канцелярским ножом. Не получилось разъединить? Не беда. Дальше нагреваем магнитопровод в местах соединения при помощи паяльника, строительного фена или простой зажигалки (только осторожнее, не повредите намотанный провод). При нагревании лак размягчается и разъединить магнитопровод будет легче. Получится обязательно.
Дальше на катушку нужно уложить слой электрической изоляции. Провод, который намотан на катушке работает под напряжением сети и, если не изолировать его от будущей обмотки, то велика вероятность проникновения напряжения сети в цепь питания светодиодов, что является угрозой для Вашей жизни. Изоляцию можно взять от старых дросселей, трансформаторов, катушек индуктивности, так же как и провод для намотки дополнительной обмотки. Можно использовать даже бумагу.
Наматываем дополнительную обмотку. Диаметр обмоточного провода нужно подобрать исходя из количества витков, нужных для получения необходимого напряжения и свободного окна в магнитопроводе. Диаметр провода нужен максимально возможный (какой влезет). Чем толще провод, тем большую мощность можно получить. У меня светодиодные сборки 24-36 вольт при токе 280-300 миллиампер и я намотал 30 витков провода диаметром 0.35. Влезло с трудом при плотной намотке, а напряжение получилось 28 вольт. Выходит примерно 1 вольт на виток.
Собираем дроссель и припаиваем его на место. Для питания светодиодов нужен постоянный ток, а у нас получается импульсный. Значит нужен выпрямитель и если Вы не хотите его собирать, то можно взять готовый, например из старого блока питания, как у меня
Обращаю Ваше внимание на то, что получившийся блок питания без нагрузки, в данном случае светодиод, включать нельзя, сгорит
Схема собрана и осталось только испытать.
При замере тока светодиода получилось 290 миллиампер при напряжении 26 вольт. Идеально. Но транзисторы в балласте греются. Конечно не страшно (они к этому привычные), но лучше их заменить на более мощные или поставить на радиаторы, если светодиод будет работать в длительном режиме. Надеюсь теперь Вы сами сможете сделать блок питания из энергосберегающих ламп для светодиода. Получившееся устройство можно применить для переделки старых светильников в светодиодные, если всё сделать аккуратно. Я специально делал всё грубо для наглядности и быстроты исполнения.
Удачи Вам.