Устройство и принцип работы солнечной батареи: схема и комплектующие, история создания

Сколько служат солнечные батареи?

Срок службы солнечных батарей

Производители часто указывают срок эксплуатации – 20-30 лет (в среднем -25 лет). На протяжении указанного периода устройство может работать без потери мощности, сбоев. Однако это не значит, что по окончании данного срока модули перестанут функционировать. Это заблуждение, т. к. солнечные батареи могут служить намного дольше (до 60 и более лет, как первая из запущенных в эксплуатацию конструкций). Только в данном случае будет постепенно снижаться производительность. Но скорость развития этого процесса низкая. Так, за 10 лет батареи могут потерять не более 10% мощности.

При регулярной эксплуатации, максимальной нагрузке модули быстрее теряют свойства. Чтобы остановить этот процесс, а также увеличить срок службы устройства, рекомендуется придерживаться рекомендаций:

  • обеспечение защиты фотоэлементов: необходимо снизить вероятность механического повреждения, солнечные батареи нужно устанавливать на участках, где риск падения деревьев нулевой, а также уровень воздействия ветровой нагрузки умеренный (что позволит исключить срыв ветром);
  • установка на открытой местности ветрозаградительных конструкций;
  • выполнение обслуживания, своевременная очистка модуля от сора.

В продаже есть также готовые комплекты – устанавливаются преимущественно для энергообеспечения частного жилья. Они состоят из батарей, силовой электроники. Длительность эксплуатации каждого из элементов, узлов разная. Так, батареи могут прослужить 2-15 лет, силовая электроника – до 20 лет.

Подключение тепловых коллекторов

Схема подключения определяется прямым назначением конструкции, чаще всего применяется два варианта:

  • Для нагревания воды в летнее время.
  • Для нагревания теплоносителя зимой в системах отопления и горячего водоснабжения.

Первый вариант отличается своей простотой, его работа основана на естественном перемещении теплоносителя. Следовательно, такая схема использования солнечной энергии для частного дома может использоваться без циркуляционного насоса. Принцип работы выглядит следующим образом: при нагревании солнечными лучами вода в коллекторе расширяется и поступает в накопительный бачок. На место уходящей воды засасывается холодная жидкость.

Однако следует учитывать, что для большей эффективности работы системы с естественной циркуляцией необходимо создать определенный угол наклона

Кроме того важно расположить накопительный бак на более высоком уровне, чем солнечный коллектор.

Для поддержания высокой температуры теплоносителя аккумулирующий бак требует дополнительной теплоизоляции.

Максимально эффективная работа солнечного коллектора требует использования более сложной схемы подключения.

В систему заливают незамерзающий теплоноситель и врезают циркуляционный насос. Для управления его работой устанавливают контроллер и температурные датчики. Первый датчик показывает значения температуры воды в аккумулирующем бачке, второй датчик устанавливают на трубе, подающей горячий теплоноситель от солнечного коллектора. Такая схема работает по следующему принципу: при нагревании воды в баке выше заданных параметров происходит отключение циркуляционного насоса, и движение теплоносителя прекращается. Когда температура понижается до контрольных значений, контроллер включает котел отопления.

Полупроводники — основы

Полупроводники — это вещества, удельная проводимость которых имеет промежуточное значение между удельными проводимостями металлов и диэлектриков.

Типичным полупроводником является кремний (Si), в состав атома которого входят 14 электронов. 4 электрона из 14 находятся в незаполненной внешней оболочке и являются слабо связанными (валентные электроны).

Атомы кремния могут объединять валентные электроны с другими атомами кремния с помощью ковалентных связей:

1) Атомы кремния в структуре кристалла
2) Ковалентные связи. Ковалентная связь — самый распространенный тип химической связи, осуществляемой при взаимодействии атомов элементов с одинаковыми или близкими значениями электроотрицательности.

При нулевой температуре в кристалле кремния свободные носители заряда отсутствуют. При повышении температуры происходит разрыв некоторых валентных связей, и электроны, участвующие ранее в создании валентных связей, отщепляются и становятся электронами проводимости. А при наличии электрического поля они перемещаются против поля и образуют электрический ток.

При освобождении электрона в кристаллической решетке образуется незаполненная межатомная связь — дырка. Данный процесс создает дополнительную возможность для переноса заряда — дырка может быть заполнена электроном, перешедшим под действием тепловых колебаний от соседнего атома. В результате в месте, где будет заполнена дырка будет восстановлена нормальная связь, а в другом месте появится другая дырка. Последовательное заполнение свободной связи электронами одновременно сопровождается движением дырки в противоположном движении электронов направлении.

Фотоэлементы из транзисторов

Еще одна разновидность элементов для солнечных батарей – фотоэлементы из старых транзисторов. Такие солнечные ячейки проще всего сделать своими руками, достаточно взять полупроводниковые транзисторы и аккуратно снять с них крышечки, чтобы открыть p-n-переход. Энерговыработка транзисторного элемента минимальна, но их вполне можно объединять в блоки, увеличивая тем самым выходные параметры. Конечно, домашнюю электростанцию из таких модулей собрать не получится, а вот использовать их для подзарядки, например, светильников, часов или небольших аккумуляторов вполне возможно.

Виды солнечных батарей

В настоящее время солнечные батареи представлены несколькими вариантами в зависимости от типа их устройства, и от материала, из которого изготовлен фотоэлектрический слой.

I. Классификация по типу их устройства:

  1. 1. Гибкие;
  2. 2. Жёсткие.

II. В зависимости от материала, из которого изготовлен фотоэлектрический слой выделяют:

  1. Солнечные батареи, фотоэлемент которых выполнен из кремния. Они в свою очередь бывают монокристаллическими, поликристаллическими и аморфными. Монокристаллические панели достаточно дорогой вариант, но они отличаются высокой мощностью. Поликристаллические дешевле, чем монокристаллические панели. Такие панели медленней теряют свою эффективность с увеличением сроков службы, а так же при нагревании. Аморфные представлены в основном тонкопленочными панелями. Такое устройство солнечной батареи позволяет генерировать солнечный свет, даже в плохих погодных условиях;
  2. Солнечные батареи, фотоэлемент которых выполнен из теллурида кадмия;
  3. Солнечные батареи, фотоэлемент которых выполнен из селена;
  4. Солнечные батареи, фотоэлемент которых выполнен из полимерных материалов;
  5. Из органических соединений;
  6. Из арсенида галлия
  7. Из нескольких материалов одновременно.

Основные типы, которые получили распространение, это многопереходные кремниевые фотоэлементы.

Другие материалы не получили широкого распространения в связи с большой стоимостью.

Параметры и характеристики солнечных батарей

Основным показателем работоспособности батареи является ее мощность. Максимальное напряжение создается при наличии яркого света и зависит от количества элементов, соединенных последовательно. Важным фактором считается площадь каждого из них.

Нормальное функционирование панелей во многом зависит от дополнительных компонентов системы. Среди них следует отметить контроллер зарядки аккумуляторной батареи, а также инвертор, который нужен для преобразования постоянного тока в переменный.

Каждый аккумулятор обладает допустимым током зарядки, который не должен быть превышен. В противном случае это приведет к выходу из строя всей системы. Мощность, необходимая для зарядки аккумулятора, выбирается в зависимости от его напряжения. Уровень заряда как раз и обеспечивается контроллером, в результате, поступающая солнечная энергия используется максимально полно.

Необходимость использования контроллера связана с недостатками прямого подключения аккумулятора к батарее. В этом случае ток зарядки может быть либо слишком большим, либо слишком маленьким. В первом случае АКБ быстро выйдет из строя, а во втором – аккумулятор не будет полностью заряжен.

Мощность инвертора должна совпадать с аналогичным показателем у подключаемого оборудования. В этом случае в расчет принимается суммарная мощность используемых электроприборов.

Где используется солнечная энергия?

О том, чтобы использовать солнечную энергию в своих целях, человек начал задумываться сравнительно недавно, хотя на практике пользовался ей на протяжении всей своей истории. Идея об аккумулировании и практическом применении возникла в начале XX века, но технологических возможностей для этого на то время не было. Прорыв совершился в конце века, когда появились фотоэлектрические панели, способные производить электроэнергию в ощутимых количествах. Вопрос важный и заслуживает подробного рассмотрения.

Использование энергии Солнца на земле является повсеместным, хоть и неосознанным явлением. Оно настолько обыденно и привычно, что люди редко задумываются о возможностях и перспективах солнечной энергетики. Однако, специалисты в разных отраслях научной и производственной деятельности давно разрабатывают технологии, позволяющие получать бесплатную и неиссякаемую энергию.

Если несколько десятилетий назад все ограничивалось нагревом воды в емкостях для летнего душа на дачном участке, то сегодня существуют различные способы использования солнечной энергии, наиболее развитые в следующих отраслях:

  • космос и авиация;
  • сельское хозяйство;
  • обеспечение энергией спортивных и медицинских объектов;
  • освещение участков частных домов или городских улиц;
  • использование в быту;
  • электрификация экспедиций, передвижных исследовательских или военных пунктов и т.д.

Этот список не будет полным, если не назвать СЭС, электростанции, где используется солнечная энергия. В последние годы их немало построено в США, Испании, ЮАР и других странах. Их мощность пока еще не способна превзойти уровень ГЭС, но технологии не стоят на месте и перспективы развития весьма многообещающие. Можно с уверенностью сказать, что через пару десятков лет на вопрос: «Где используется энергия Солнца на Земле?» можно будет услышать ответ: «Везде».

Особенности использования солнечной энергии

Фотоэнергия излучения солнца преобразуется в фотоэлектрических элементах. Это двухслойная структура, состоящая из 2 полупроводников различного типа. Полупроводник внизу – это p-тип, а верхний − n-тип. У первого недостаток электронов, а у второго − избыток.

Электроны полупроводника n-типа поглощают солнечное излучение, в результате чего электроны в нём сходят с орбиты. Силы импульса хватает для перехода в полупроводник p-типа. В результате возникает направленный поток электроном и генерируется электричество. При производстве фотоэлементов используется кремний.

На сегодняшний день выпускаются несколько видов фотоэлементов:

  • Монокристаллические. Они выпускаются из монокристаллов кремния и имеют равномерную кристаллическую структуру. Среди остальных типов выделяются самым высоким КПД (около 20 процентов) и увеличенной стоимостью;
  • Поликристаллические. Структура поликристаллическая, менее равномерная. Стоят дешевле и имеют КПД от 15 до 18 процентов;
  • Тонкопленочные. Эти фотоэлементы изготовлены напылением на гибкую подложку аморфного кремния. Такие фотоэлементы дешевле всего, но и КПД у них оставляет желать лучшего. Они используются при производстве гибких солнечных панелей.

Характеристика полупроводников

Из 104 элементов таблицы Менделеева 79 являются металлами, 25 – неметаллами, из которых 13 химических элементов обладают полупроводниковыми свойствами и 12 – диэлектрическими. Основное отличие полупроводников состоит в том, что их электропроводность значительно возрастает при повышении температуры. При низких температурах они ведут себя подобно диэлектрикам, а при высоких — как проводники. Этим полупроводники отличаются от металлов: сопротивление металла растёт пропорционально увеличению температуры.

Другим отличием полупроводника от металла является то, что сопротивление полупроводника падает под действием света, в то время как на металл последний не влияет. Также меняется проводимость полупроводников при введении незначительного количества примеси.

Полупроводники встречаются среди химических соединений с разнообразными кристаллическими структурами. Это могут быть такие элементы, как кремний и селен, или двойные соединения, как арсенид галлия. Многие органические соединения, например полиацетилен (СН)n, – полупроводниковые материалы. Некоторые полупроводники проявляют магнитные (Cd1-xMnxTe) или сегнетоэлектрические свойства (SbSI). Другие при достаточном легировании становятся сверхпроводниками (GeTe и SrTiO3). Многие из недавно открытых высокотемпературных сверхпроводников имеют неметаллические полупроводящие фазы. Например, La2CuO4 является полупроводником, но при образовании сплава с Sr становится сверхроводником (La1-xSrx)2CuO4.

Учебники физики дают полупроводнику определение как материалу с электрическим сопротивлением от 10-4 до 107 Ом·м. Возможно и альтернативное определение. Ширина запрещённой зоны полупроводника — от 0 до 3 эВ. Металлы и полуметаллы – это материалы с нулевым энергетическим разрывом, а вещества, у которых она превышает З эВ, называют изоляторами. Есть и исключения. Например, полупроводниковый алмаз имеет запрещённую зону шириной 6 эВ, полуизолирующий GaAs – 1,5 эВ. GaN, материал для оптоэлектронных приборов в синей области, имеет запрещённую зону шириной 3,5 эВ.

Кремниевые монокристаллические панели

Описание

Для самих же пластин характерна поверхность однородного синего цвета. Кремний в этом случае требует высокой очистки. Понятно, что технологический процесс по очистке его отличается дороговизной. Затратным является и процесс, результатом которого является ориентирование кристаллов в одном направлении.

Важно: Характеристики рабочего слоя наибольший КПД обеспечивают лишь в случае, когда лучи падают на панели пол прямым углом. КПД у них достаточно высокий, но и цена тоже самая большая, в сравнении с другими видами пластин

КПД у них достаточно высокий, но и цена тоже самая большая, в сравнении с другими видами пластин.

Солнечным панелям монокристаллическим большой площади необходимы поворотные устройства. В таком виде они считаются идеальным решением для пустынь. Там их производительность наилучшая.

Из выращенного в условиях производства кристалла, имеющего вид цилиндра, вырезаются слои. Вот почему у готовых блоков углы скруглены.

Преимущества

  • Высокий КПД – от 17 до 25 процентов;
  • Небольшая площадь для установки;
  • Период эксплуатации достигает 25 и более лет.

Рекомендуем:

  • Тонкопленочные солнечные батареи: достоинства и недостатки, цена, характеристики
  • Солнечные батареи для отопления дома: виды, особенности монтажа, цена
  • Достоинства, недостатки и перспектива аморфных солнечных батарей

Недостатки

Их немного:

  • достаточно высокая цена;
  • небыстрая окупаемость;
  • поверхности панелей слишком чувствительны к различным загрязнениям. Поскольку свет хуже рассеивается на покрытой пылью панели, то и эффективность ее резко падает;
  • необходимость в прямых лучах требует их размещения только на открытых местах и высоко от земли.

Чем область ближе расположена к экватору, тем большее там количество в году солнечных дней. И это вид панелей, использующих энергию солнца, наиболее предпочтительный.

Применение солнечных батарей

Кроме космонавтики и обеспечения частных домов электроэнергией, панели или батареи солнечные применяют в следующих сферах:

  • Автомобилестроение. Экологичный транспорт приобретает популярность, ведь выхлопы бензина и газов загрязняют атмосферу, а цены на топливо постоянно растут. Машины на солнечной энергии способны развивать скорость до 140 км/ч.
  • Эксплуатация водного транспорта (барж, катеров, яхт). Такой транспорт можно встретить в Турции. Лодки развивают небольшую скорость (до 10 км/ч), и это позволяет туристом осмотреть достопримечательности и роскошные пейзажи этой страны.
  • Энергообеспечение зданий. В развитых странах Европы многие муниципальные здания и сооружения полностью обеспечивают свои нужды с помощью энергии, которую выделяют солнечные панели.
  • Самолетостроение. Благодаря наличию батарей, самолет в полете может длительное время не расходовать топливо.

Виды солнечных панелей

Солнечные батареи функционируют долго, могут вырабатывать постоянный ток, даже если погода пасмурная. Вместе с тем появляется возможность предупредить возникновение скачков напряжения. Как результат, техника на объекте, подключенная к такому источнику электроэнергии, служит дольше, т. к. созданы более щадящие условия эксплуатации (исключается риск повышения, падения напряжения, отключение питания).

Модуль представляет собой панель, состоящую из нескольких преобразователей, объединенных между собой. Чтобы изменить характеристики солнечной батареи, добавляют такие конструкции. Но эффективность работы подобных устройств зависит не только от количества модулей, а еще и от того, насколько правильно была выполнена установка (учитывают углы наклона панелей, интенсивность солнечного освещения на участке). Модули представлены видами:

Монокристаллические. Производятся из чистого материала – монокристаллического кремния. Его отличает высокие показатели эффективности. Причем КПД солнечных элементов – около 22%, а панелей на их основе – не более 18%. Такие модули рекомендуется применять в местности, где уровень освещенности часто низкий.

Монокристаллическая солнечная панель

Поликристаллические. По стоимости они предпочтительнее, т. к. производятся из мультикристаллических пластин. Еще одна причина низкой цены – недостаточно высокая производительность. Рекомендуется применять такие модули, если в местности сравнительно одинаковый уровень освещенности в разное время, отсутствуют резкие перепады.

Поликристаллические солнечные панели

Аморфные. Другое название – тонкопленочные солнечные батареи. Они отличаются универсальным действием (применяются на разных объектах, в различных целях). Могут устанавливаться там, где жаркое солнце внезапно сменяется облачной погодой. Теоретически аморфные панели в будущем будут использоваться не только на крышах, но и на сумках, других бытовых изделиях. Минусом таких панелей является более низкая производительность, если сравнивать с поли-, монокристаллическими.

Тонкопленочные (аморфные) солнечные панели

Гетероструктурные. Считаются наиболее эффективными, их КПД достигает 25%. Панели вырабатывают электроэнергию при солнечной и пасмурной погоде. В России такую продукцию представляет марка «Хевел». Компания-производитель разрабатывает и внедряет собственную технологию производства гетероструктурных панелей.

Гетероструктурные солнечные панели

Основные элементы конструкции:

  • аккумулятор, позволяющая устранить перепады напряжения, вызванные изменением освещенности панели, а еще одна накапливает энергию;
  • инвертор – преобразователь тока (из постоянного в переменный);
  • контроллер: обеспечивает стабильную работу модуля, т. к. контролирует все параметры (температуру, зарядное напряжение аккумулятора и др.).

В продаже встречаются готовые системы, а также отдельные элементы для сбора с учетом собственных потребностей.

Возможности современных технологий

Поверхность земли получает различное количество солнечной энергии, все зависит от расположения территории относительно экватора и времени года. К примеру, в Заполярье солнца намного меньше, чем в экваториальной части. Кроме того летом солнечное излучение интенсивнее, чем в зимний период. При расчетах средних значений специалисты определили, что за один час квадратный метр поверхности земли получает около 160 Вт солнечной энергии. Современные системы отличаются высокой продуктивностью, благодаря чему появилась возможность использовать энергию солнечного излучения практически в любом месте.

Для получения максимального КПД при использовании солнечной энергии применяются два способа:

  • Прямое нагревание тепловых коллекторов. Прямые солнечные лучи нагревают тепловые коллекторы, они в свою очередь передают тепло жидкости в отопительном контуре и системе горячего водоснабжения. Тепловые коллекторы могут быть открытого и закрытого типа, могут иметь плоскую или сферическую форму. Тепловую энергию, получаемую с коллекторов можно использовать для нагревания рабочей среды в системе водоснабжения и теплоносителя в отопительной системе.
  • Применение солнечных батарей. В этом случае происходит преобразование солнечной энергии в электричество, которое в последствие передается потребителю через специальную систему.

Параметры и характеристики солнечных батарей

Основным показателем работоспособности батареи является ее мощность. Максимальное напряжение создается при наличии яркого света и зависит от количества элементов, соединенных последовательно. Важным фактором считается площадь каждого из них.

Нормальное функционирование панелей во многом зависит от дополнительных компонентов системы. Среди них следует отметить контроллер зарядки аккумуляторной батареи, а также инвертор, который нужен для преобразования постоянного тока в переменный.

Каждый аккумулятор обладает допустимым током зарядки, который не должен быть превышен. В противном случае это приведет к выходу из строя всей системы. Мощность, необходимая для зарядки аккумулятора, выбирается в зависимости от его напряжения. Уровень заряда как раз и обеспечивается контроллером, в результате, поступающая солнечная энергия используется максимально полно.

Необходимость использования контроллера связана с недостатками прямого подключения аккумулятора к батарее. В этом случае ток зарядки может быть либо слишком большим, либо слишком маленьким. В первом случае АКБ быстро выйдет из строя, а во втором – аккумулятор не будет полностью заряжен.

Мощность инвертора должна совпадать с аналогичным показателем у подключаемого оборудования. В этом случае в расчет принимается суммарная мощность используемых электроприборов.

Источник солнечной энергии

Становились ли вы участником обсуждений альтернативной энергии? Практически каждый человек хоть что-то, но слышал об этом. И многим даже выпадало воочию наблюдать солнечные батареи или ветровые электростанции

Сейчас развитие данной сферы энергоснабжения очень важно для дальнейшего комфортного существования человечества

Так как основную часть традиционных ресурсов, таких как полезные ископаемые, мы практически исчерпали, приходится искать более долговечные источники. Одним из таких нетрадиционных источников энергии является солнечная энергия. Этот ресурс один из наиболее распространенных и легкодоступных, поскольку солнечный свет в том или ином количестве есть в любом уголке нашей планеты. Поэтому разработки, связанные с аккумуляцией солнечной энергией, начались достаточно давно и активно проводятся и по сей день.

Как источник энергии солнечный свет отличная альтернатива традиционным ресурсам. И при грамотном использовании вполне может вытеснить все другие энергоресурсы в будущем.

Что является источником солнечной энергии?

Чтобы найти наиболее эффективные методы преобразования энергии Солнца, ученым нужно было понять, какое превращение является источником солнечной энергии. Для получения ответа на данный вопрос было проведено огромное количество опытов и исследований. Существуют разные гипотезы, призванные объяснить это явление. Но экспериментальным путем в процессе долгих исследований было доказано, что реакция, во время которой с помощью ядер углерода водород превращается в гелий, выступает тем самым  основным источником солнечной энергии.

p — n Переход .

p-n-Переход — это простейшая полупроводниковая структура, которая используется в большинстве полупроводниковых приборов. Для получе­ния p-n-перехода полупроводниковый образец легируют (вводят в него примеси) таким образом, чтобы в одной его части преобладали донорные примеси, а в другой — акцепторные, в результате получают контакт полу­проводника n-типа с полупроводником p-типа.

Советуем изучить Схемы простых стабилизаторов напряжения

Основным свойс­твом p-n-перехода является его способность пропускать ток только в одном направлении, если напряжение приложено к образцу так, что про­водимость осуществляется основными носителями тока, как это показано на рисунке выше: «-» со стороны полупроводника n-типа, «+» — со стороны p-типа (электроны из n-области переходят в p-область, и наоборот).

Если теперь поменять полярность приложенного напряжения U, то ток через p-n-переход практически не идет, т. к. переход через контакт осуществляется неосновными носителями, которых мало. Вольт-амперная характеристика р-n-перехода изображена на рисунке ниже.

Как сделать правильный выбор?

Для владельцев домов, расположенных на Европейском континенте выбор довольно прост — это поликристалл либо монокристалл из кремния. При этом, при ограниченных площадях стоит сделать выбор в пользу монокристаллических панелей, а при отсутствии таких ограничений — в пользу поликристаллических батарей. При выборе производителя, технических параметров оборудования и дополнительных систем стоит обратиться к компаниям, которые занимаются как продажей, так и установкой комплектов. Учитывайте, что вне зависимости от производителя — качество систем у «топовых» производителей вряд ли будет отличаться, поэтому не дайте себя обмануть, изучая ценовую политику.

Бюджетным, но эффективным выбором станут панели от компании Amerisolar, поликристаллическая модель носит название AS–6P30 280W, имеет размер 1640х992 мм и выдаёт, соответственно — 280 Вт мощности. КПД модуля составляет 17.4%. Из минусов — гарантия всего 2 года. Но стоимость ∼7 тыс. рублей.
Аналогичным по мощности будет модуль RS 280 POLY от китайской Runda, стоимость ещё ниже — около 6 тыс

рублей.
Если место ограничено, стоит обратить внимание на продукт компании LEAPTON SOLAR — LP72–375M PERC, КПД составляет 19.1%, и при размерах 1960х992 мм получаем на выходе 375 Вт энергии. Стоимость такой батареи будет в районе 10 тыс

рублей.
Ещё одним эффективным вариантом с меньшими габаритами, 1686х1016 мм будет новинка от LG — NeOn 340 W. «Не он» может похвастаться КПД в 19.8%, но не может похвастаться стоимостью, она будет более чем в половину выше предыдущего образца — примерно 16 тысяч рублей.
Для тех, кто хочет обратить своё внимание на премиальный сегмент, тайваньская компания BenQ выпустила на рынок монокристальный модуль SunForte PM096B00 333W, выдающий на выходе 333 Вт мощности, имеющий номинальный КПД в 20.4% при размерах 1559х1046 мм. Этот модуль получил впечатляющую стоимость в почти 35 тысяч рублей.

Сфера применения солнечной энергии

Есть три направления использования солнечной энергии:

  • Экономия электроэнергии. Солнечные панели позволяют отказаться от централизованного электроснабжения или уменьшить его потребление, а также продавать излишки электричества электроснабжающей компании.
  • Обеспечение электроэнергией объектов, подведение к которым линии электропередач невозможно или невыгодно экономически. Это может быть дача или охотничий домик, находящийся далеко от ЛЭП. Такие устройства используются также для питания светильников в отдаленных участках сада или автобусных остановках.
  • Питание мобильных и переносных устройств. При походах, поездках на рыбалку и других подобных мероприятиях есть необходимость зарядки телефонов, фотоаппаратов и прочих гаджетов. Для этого также используются солнечные элементы.


Солнечные батареи удобно применять там, куда нельзя подвести электричество

Развитие рынка солнечных батарей

Разработкой солнечных батарей, предназначенных для выработки электроэнергии из солнечного света, в США занималась компания Hoffman Electronics Corp. В период с 1954 по 1960 годы ее конструкторам удалось поднять производительность гелиопанелей с 2% до 14%. Однако коммерческая успешность новых батарей была сомнительной – стоимость ватта энергии, полученной от солнечных панелей при ярком освещении солнечными лучами, составляла в те годы порядка 250 долларов. Производить электроэнергию при помощи ТЭЦ было гораздо выгоднее – цена «угольного» ватта обходилась не более чем в 2-3$.

Лесу Хоффману, владельцу компании-разработчика фотоэлектрических преобразователей (гелиопанелей), удалось получить армейский космический контракт и оснастить солнечными батареями небольшой площади американский спутник Авангард-1 (запущен в 1958 году), который, на момент написания этой статьи, по-прежнему исправно служит своим создателям на орбите Земли. Эффективность гелиопанелей в энергоснабжении космического аппарата оказалась настолько высока (изначально ставка делалась на аккумуляторные батареи, солнечные батареи считались сомнительным источником энергии), что для спутника Explorer 6 (запущен в 1959 году) Хоффману поручили создать батареи основного питания. Именно так появились знаменитые раскладные панели-крылья, которыми впоследствии оснащалось большинство космических спутников.

За исключением космической индустрии и нескольких производителей дорогих электромеханических игрушек, 50 лет назад солнечные батареи более никого не интересовали, несмотря на снижение стоимости ватта до 100$ в 1971 году, с появлением интегральных микросхем.

Энергетический кризис, произошедший в начале 70-х годов XX века, изменил представление крупнейших игроков мирового рынка энергоносителей об альтернативной энергетике и в частности – о солнечных батареях. Корпорации BP, Shell, Exxon и Mobil направили часть прибыли на разработку гелиопанелей.

Особенный интерес к энергетическим перспективам проявила Exxon. По оценке ее аналитиков динамика роста цен на энергоносители через 30-40 лет станет весьма интересной для солнечной энергетики и гелиопанели принесут ощутимую прибыль. Совет директоров Exxon привлекли к разработкам в этой области Эллиота Бермана, с конца 60-х проводившего исследования, касающиеся солнечной энергетики. Берман создал технологию печатных ячеек, удешевившую цену ватта, вырабатываемого солнечными батареями, со 100$ до 20$ всего за два года – с 1970-го по конец 1972-го.

Долгосрочные прогнозы Exxon в отношении солнечной энергетики оправдались – в начале 2008 года стоимость нефти взмыла до отметки 147$ за баррель (сорт WTI), что во многом объяснялось истощением месторождений. Последовавший экономический кризис снизил цены на баррель нефти до 33$, однако сейчас расценки на фьючерсы WTI составляют чуть более 101$ за баррель.

В начале XXI века американские корпорации, лидирующие на рынке фотоэлектрических преобразователей, массово перенесли свои производства в Китай. Наряду с удешевлением производственных процессов эта мера позволила снизить расценки в 2012 году до 2$ за ватт номинальной мощности.

Зачем нужны солнечные батареи?

Автономность дома от внешних источников энергии – это мечта технологически подкованного человека, который понимает важность применения экологически чистого энергоносителя. В условиях удорожания электричества в мире, где потребление энергии растет с каждым годом и не замедлит своего роста, традиционные источники, которые причиняют большой вред окружающей среде и влияют на наше с вами здоровье, солнечные батареи являются самым простым и выгодным вариантом

Этот вид энергии имеет неисчерпаемый ресурс солнца, который легко улавливать и грамотно собранная система будет работать круглый год с переменной эффективностью в зависимости от сезона и солнечных дней в году. Технологическое производство солнечных панелей освоено и выпускает продукцию на массовый рынок, поэтому цены на оборудование падают стремительными темпами в условиях современной конкуренции. Система солнечных батарей состоит из непосредственно панелей, улавливающих свет, зарядного контролера, который следит за поступающей и уходящей энергией и не дает аккумуляторам полностью разрядиться или перезарядиться, собственно аккумулятора и инвертора, преобразующего ток постоянный в переменный.

Где купить

Солнечная батарея (панель), это довольно дорогостоящее устройство, к тому же, как правило необходимо приобретать несколько панелей, поэтому лучшим местом для приобретения, являются специализированные организации, занимающиеся продажей солнечных электростанций и комплектующих к ним.

В связи с тем, как уже писалось выше, на рынке подобных устройств, большое количество китайских изделий, то можно воспользоваться покупкой через интернет. В этом случае необходимо используя тот же интернет, изучить отзывы о приобретаемом устройстве, а также отзывы о компании, которая его поставляет.

У российских и европейских компаний, есть представительства в разных городах нашей страны, можно воспользоваться их услугами, предварительно, так же, как и при приобретении через интернет, ознакомившись с отзывами о выбранном устройстве.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Электрика
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector