Мощность идеального источника тока

Параметры источника питания

При подключении электроприборов к электропитанию и создании замкнутой цепи, кроме энергии Р, потребляемой нагрузкой, учитываются следующие параметры:

  • Роб. (полная мощность источника тока), выделяемая на всех участках цепи;
  • ЭДС – напряжение, вырабатываемое элементом питания;
  • Р (полезная мощность), потребляемая всеми участками сети, кроме источника тока;
  • Ро (мощность потерь), потраченная внутри батареи или генератора;
  • внутреннее сопротивление элемента питания;
  • КПД источника электропитания.

Внимание!

Не следует путать КПД источника и нагрузки. При высоком коэффициенте батареи в электроприборе он может быть низким из-за потерь в проводах или самом устройстве, а также наоборот.

Об этом подробнее.

Полная энергия цепи

При прохождении электрического тока по цепи выделяется тепло, или совершается другая работа. Аккумулятор или генератор не являются исключением. Энергия, выделенная на всех элементах, включая провода, называется полной. Она рассчитывается по формуле Роб.=Ро.+Рпол., где:

  • Роб. – полная мощность;
  • Ро. – внутренние потери;
  • Рпол. – полезная мощность.

Внимание!

Понятие о полной мощности используется не только в расчётах полной цепи, но также в расчетах электродвигателей и других устройств, потребляющих вместе с активной реактивную энергию.

ЭДС, или электродвижущая сила, – напряжение, вырабатываемое источником. Измерить его можно только в режиме Х.Х. (холостого хода). При подключении нагрузки и появлении тока от значения ЭДС вычитается Uо. – потери напряжения внутри питающего устройства.

Полезная мощность

Полезной называют энергию, выделенную во всей цепи, кроме питающего устройства. Она высчитывается по формуле:

  1. “U” – напряжение на клеммах,
  2. “I” – ток в цепи.

В ситуации, при которой сопротивление нагрузки равно сопротивлению источника тока, она максимальна и равна 50% полной.

При уменьшении сопротивления нагрузки ток в цепи растёт вместе с внутренними потерями, а напряжение продолжает падать, и при достижении нуля ток будет максимальным и ограниченным только Rо. Это режим К.З. – короткого замыкания. При этом энергия потерь равна полной.

При росте сопротивления нагрузки ток и внутренние потери падают, а напряжение растёт. При достижении бесконечно большой величины (разрыве сети) и I=0 напряжение будет равно ЭДС. Это режим Х..Х. – холостого хода.

Потери внутри источника питания

Аккумуляторы, генераторы и другие устройства имеют внутреннее сопротивление. При протекании через них тока выделяется энергия потерь. Она рассчитывается по формуле:

где “Uо” – падение напряжения внутри прибора или разница между ЭДС и выходным напряжением.

Внутреннее сопротивление источника питания

Для расчёта потерь Ро. необходимо знать внутреннее сопротивление устройства. Это сопротивление обмоток генератора, электролита в аккумуляторе или по другим причинам. Замерить его мультиметром не всегда возможно. Приходится пользоваться косвенными методами:

  • при включении прибора в режиме холостого хода замеряется Е (ЭДС);
  • при подключенной нагрузке определяются Uвых. (выходное напряжение) и ток I;
  • рассчитывается падение напряжения внутри устройства:

вычисляется внутреннее сопротивление:

Трение

В двигателе есть много движущихся частей, которые создают трение . Некоторые из этих сил трения остаются постоянными (пока приложенная нагрузка постоянна); некоторые из этих потерь на трение увеличиваются с увеличением частоты вращения двигателя, например, силы со стороны поршня и усилия в соединительных подшипниках (из-за увеличения сил инерции от качающегося поршня). Некоторые силы трения уменьшаются при более высокой скорости, например сила трения на выступах кулачка , используемая для приведения в действие впускных и выпускных клапанов ( инерция клапанов на высокой скорости имеет тенденцию оттягивать толкатель кулачка от выступа кулачка). Помимо сил трения, работающий двигатель имеет насосные потери , которые представляют собой работу, необходимую для перемещения воздуха в цилиндры и из них. Эти насосные потери минимальны при низкой скорости, но возрастают примерно как квадрат скорости, пока при номинальной мощности двигатель не использует около 20% общей выработанной мощности для преодоления потерь на трение и накачку.

Взаимосвязь полезной мощности и КПД

Коэффициент полезного действия (КПД) – величина безразмерная, численно выражается в процентах. КПД обозначают буквой η.

кВа в кВт — как правильно перевести мощность

Формула имеет вид:

η = А/Q,

где:

  • А – полезная работа (энергия);
  • Q – затраченная энергия.

По мере увеличения КПД в различных двигателях допустимо выстроить следующую линейку:

  • электродвигатель – до 98%;
  • ДВС – до 40%;
  • паровая турбина – до 30%.

Что касается мощности, КПД равен отношению полезной мощности к полной мощности, которую выдает источник. В любом случае η ≤ 1.

Важно! КПД и Pпол не одно и то же. В разных рабочих процессах добиваются максимума или одного, или другого

Получение максимальной энергии на выходе ИП

К сведению. Чтобы увеличить КПД подъёмных кранов, нагнетательных насосов или двигателей самолётов, нужно уменьшить силы трения механизмов или сопротивления воздуха. Этого достигают применением разнообразных смазок, установкой подшипников повышенного класса (заменив скольжение качением), изменением геометрии крыла и т.д.

Максимальная энергия или мощность на выходе ИП может быть достигнута при согласовании сопротивления нагрузки Rн и внутреннего сопротивления R0 ИП. Это значит, что Rн = R0. В этом случае КПД равен 50%. Это вполне приемлемо для малоточных цепей и радиотехнических устройств.

Однако этот вариант не подходит для электрических установок. Чтобы впустую не тратились большие мощности, режим эксплуатации генераторов, выпрямителей, трансформировав и электродвигателей таков, что к.п.д. приближается к 95% и выше.

График зависимости Рпол и η от тока в цепи

Достижение максимального КПД

Формула КПД источника тока имеет вид:

η = Pн/Pобщ = R/Rн+r,

где:

  • Pн – мощность нагрузки;
  • Pобщ – общая мощность;
  • R – полное сопротивление цепи;
  • Rн – сопротивление нагрузки;
  • r – внутреннее сопротивление ИТ.

Как видно из графика, изображённого на рис. выше, мощность Pн с уменьшением тока в цепи стремится к нулю. КПД, в свою очередь, достигнет максимального значения, когда цепь будет разомкнута, и ток равен нулю, при коротком замыкании в цепи станет равным нулю.

Если обратиться к элементарному тепловому двигателю, состоящему из поршня и цилиндра, то у него степень сжатия равна степени расширения. Повышение КПД такого мотора возможно в случае:

  • изначально высоких параметров: давления и температуры рабочего тела перед началом расширения;
  • приближения их значений к параметрам окружающей среды по окончании расширения.

Достижение ηmax доступно лишь при наиболее эффективном изменении давления рабочего компонента во вращательное движение вала.

К сведению. Термический коэффициент полезного действия повышается с повышением доли теплоты, подаваемой к рабочему телу, которая преобразуется в работу. Подаваемая теплота делится на два вида энергии: внутренняя в виде температуры и энергия давления.

Механическую работу, по сути, совершает только второй вид энергии. Это порождает целый ряд минусов тормозящих процесс повышения КПД:

  • некоторая часть давления уходит на внешнюю среду;
  • достижение максимального коэффициента полезного действия невозможно без увеличения процента использования энергии давления для преобразования в работу;
  • нельзя поднять КПД тепловых двигателей, не изменяя S поверхности приложения давления, и без удаления этой поверхности от точки вращения;
  • использование только газообразного рабочего тела не способствует повышению η тепловых двигателей.

Для достижения высокого коэффициента полезного действия теплового двигателя нужно определяться с рядом решений. Этому способствуют следующие модели устройства:

  • ввести в цикл расширения ещё одно рабочее тело с другими физическими свойствами;
  • наиболее полно перед расширением использовать оба вида энергии рабочего тела;
  • осуществлять генерацию добавочного рабочего тела прямо при расширении газообразного.

Информация. Все доработки двигателей внутреннего сгорания в виде: нагнетателя турбонадува, организации многократного или распределённого впрыска, а также повышения влажности воздуха, доведения топлива при впрыске до состояния пара, не дали ощутимых результатов резкого повышения КПД.

КПД двигателя внутреннего сгорания

Первый в России прототип квантового компьютера заработал в НИТУ «МИСиС»

В НИТУ «МИСиС» заработал первый в России прототип квантового компьютера. Устройство на двух кубитах выполнило заданный алгоритм, превысив ранее известный предел точности на 3%. В качестве основы для кубитов были взяты сверхпроводящие материалы.

Работы по созданию квантового компьютера в рамках проекта Фонда перспективных исследований ведутся в НИТУ «МИСиС» с 2021 года под руководством Валерия Рязанова, главного научного сотрудника Лаборатории сверхпроводящих метаматериалов университета. Конструкция предполагает использование в качестве основы для кубитов сверхпроводящих материалов.

Сторонние силы источника тока

Если на концах какого-нибудь провод­ника AB создать разность потенциалов (рис. 5.16), то в нем возникнет электрическое поле напряженностью E̅.

Под действием этого поля свободные за­ряженные частицы (в металлах — это сво­бодные электроны) будут двигаться в опре­деленном направлении, не прекращая сво­его хаотического движения, создавая кратко­временный ток.

Тем не менее, на практике в подавляющем большинстве случаев необходимо иметь ток в проводниках на протяжении продолжитель­ного времени. Для этого на концах провод­ника разность потенциалов необходимо под­держивать неизменной. Эту функцию в элект­рических цепях выполняют источники тока.

Рис. 5.16. В проводнике, в котором со­здано электрическое поле, возникает ток проводимости

Любой источник тока имеет два полюса: положительный и отрицательный. Источ­ник, как и любой другой проводник, имеет свое сопротивление r, которое называется внутренним сопротивлением (рис. 5.17).

На полюсах источника на протяжении продолжительного времени существует раз­ность потенциалов. Но почему же в таком случае не возникает ток в самом источнике? В самом деле, на полюсах батареи для кар­манного фонарика довольно долго сущест­вует разность потенциалов, однако ток воз­никает лишь тогда, когда к полюсам бата­реи подсоединяется лампочка. Очевидно, что в источнике существуют какие-то силы, ко­торые стараются поддерживать разность потен­циалов на его полюсах, противодействуют электрическим силам, стремящимся выров­нять потенциалы на полюсах источника. Эти силы имеют неэлектрическое происхожде­ние, поэтому и называются сторонними.

Рис. 5.17. Источник тока

Сторонние силы обусловливают разде­ление разноименно заряженных частиц в источнике и поддерживают на его полюсах определенную разность потенциалов. В галь­ванических элементах разделение заряжен­ных частиц осуществляется за счет хими­ческой энергии, в термогенераторах — за счет тепловой и т.п.

Таким образом, сторонние силы внутри источника тока создают электрическое по­ле, которое называется полем сторонних сил. Напряженность такого поля Eст. может измеряться силой, действующей на заря­женные частицы с суммарным зарядом в одну единицу. Материал с сайта https://worldofschool.ru

Eст. = Fст. / q.

Очевидно, что напряженности поля сто­ронних сил и электрических сил в источнике имеют противоположные направ­ления. Если внешняя часть цепи источника разомкнута, то напряженности обоих полей в источнике одинаковы и никакого тока в источнике нет.

Когда внешняя часть цепи ис­точника разомкнута, то напря­женность поля сторонних сил и электрических сил в источнике одинаковы по значению и про­тивоположны по направлению, поэтому и компенсируют друг друга.

Таким образом, роль источника сводится к разделению разноименно заряженных ча­стиц и к накоплению их на полюсах источ­ника.

На этой странице материал по темам:

Вопросы по этому материалу:

Электрические цепи и их компоненты

Электрическая цепь — это совокупность устройств и объектов, образующих путь электрического тока, электромагнитные процессы которого могут быть описаны терминами электродвижущая сила, ток и напряжение. В электрической цепи постоянного тока могут действовать как прямые токи, так и токи, направление которых остается постоянным и значение которых изменяется произвольно с течением времени или по какому-либо закону.

Электрическая
цепь состоит из отдельных устройств или элементов, которые можно разделить на 3
группы в зависимости от их назначения. Первая группа состоит из элементов,
предназначенных для производства электроэнергии (источников питания). Вторая
группа состоит из элементов, которые преобразуют электроэнергию в другие виды
энергии (механическую, тепловую, световую, химическую и т.д.). Эти элементы
называются приемниками электрической энергии (электрическими приемниками).
Третья группа включает в себя элементы, предназначенные для передачи
электроэнергии от источника питания к электрическому приемнику (провода,
устройства, обеспечивающие уровень и качество напряжения и т.д.).

Источниками
тока в цепи постоянного тока являются гальванические элементы,
электроаккумуляторы, электромеханические генераторы, термоэлектрические
генераторы, фотоэлементы и др. Все источники питания имеют внутреннее
сопротивление, значение которого мало по сравнению с сопротивлением других
элементов в электрической цепи.

Электрические приемники постоянного тока — это электродвигатели, которые преобразуют электрическую энергию в механические, отопительные и осветительные приборы и т.д. Все электрические приемники характеризуются электрическими параметрами, из которых можно назвать самые основные — напряжение и мощность. Для нормальной работы электрического приемника на его клеммах (соединениях) необходимо поддерживать номинальное напряжение. Для приемников постоянного тока это 27, 110, 220, 440 В и 6, 12, 24, 36 В.

Графическое
изображение электрической цепи, содержащее символы ее элементов и показывающее
соединения этих элементов, называется электрической схемой.

Участок
цепи, по которому протекает один и тот же ток, называется веткой. Место
соединения ветвей электрической цепи называется узлом. В электрических цепях
узел обозначен точкой. Любой замкнутый контур, проходящий через несколько
ветвей, называется петлей. Самая простая схема имеет одну схему, сложные схемы
имеют несколько контуров.

Элементы
электрических цепей представляют собой различные электрические устройства,
которые могут работать в различных режимах. Режимы работы как отдельных
элементов, так и всей электрической цепи характеризуются значениями тока и
напряжения. Поскольку ток и напряжение, как правило, могут принимать любое
значение, существует бесчисленное множество режимов работы.

Режим ожидания — это режим, в котором ток в цепи не протекает. Такая ситуация может возникнуть, когда цепь прерывается. Номинальная работа происходит, когда источник питания или другой элемент цепи работает при уровнях тока, напряжения и мощности, указанных в паспорте на данное электрическое устройство. Эти значения соответствуют оптимальным условиям эксплуатации оборудования с точки зрения экономичности, надежности, долговечности и др.

Режим короткого замыкания — это режим, в котором сопротивление приемника равно нулю, что эквивалентно соединению положительного и отрицательного выводов источника питания с нулевым сопротивлением. Ток короткого замыкания может достигать высоких значений, во много раз превышающих номинальный ток. Поэтому режим короткого замыкания является аварийным для большинства установок.

Согласованный
режим питания и внешней цепи возникает тогда, когда сопротивление внешней цепи
равно внутреннему сопротивлению. В этом случае ток короткого замыкания в 2 раза
меньше, чем ток короткого замыкания.

Наиболее
распространенными и простыми типами соединений в электрической цепи являются
последовательные и параллельные соединения.

От чего зависит величина КПД

Эта величина зависит от того, насколько общая совершенная работа может переходить в полезную. Прежде всего, это зависит от самого устройства механизма или машины. Инженеры всего мира бьются над тем, чтобы повышать КПД машин. Например, для электромобилей коэффициент очень высок – больше 90%.

А вот двигатель внутреннего сгорания, в силу своего устройства, не может иметь η, близкий к 100 процентам. Ведь энергия топлива не действует непосредственно на вращающиеся колеса. Энергия рассеивается на каждом передаточном звене. Слишком много передаточных звеньев, и часть выхлопных газов все равно выходит в выхлопную трубу.

Тепловые двигатели и охрана окружающей среды

Тепловые двигатели наносят серьёзный ущерб окружающей среде. Их повсеместное использование приводит к целому ряду негативных эффектов.

• Рассеяние в атмосферу огромного количества тепловой энергии приводит к повышению температуры на планете. Потепление климата грозит обернуться таянием ледников и катастрофическими бедствиями.• К потеплению климата ведёт также накопление в атмосфере углекислого газа, который замедляет уход теплового излучения Земли в космос (парниковый эффект).• Из-за высокой концентрации продуктов сгорания топлива ухудшается экологическая ситуация.

Это — проблемы в масштабе всей цивилизации. Для борьбы с вредными последствиями работы тепловых двигателей следует повышать их КПД, снижать выбросы токсичных веществ, разрабатывать новые виды топлива и экономно расходовать энергию.

Классификация приборов

Наиболее верным, с точки зрения науки, источнику тока даёт определение теория электрических цепей. Согласно ей под ним понимают двухполюсник, прохождение через который упорядоченных зарядов не зависит от приложенного потенциала на его выводах. В то же время в электротехнике им называют любой источник электрического поля.

Все существующие источники тока разделяют по виду преобразуемой ими энергии. Иными словами, по виду трансформируемой материи в силу, которая затем совершает работу по перемещению элементарных носителей зарядов. Существующие типы генераторов электротока можно представить таблицей:

Механические В их принципе работы используется преобразование двигательной энергии в электрическую. Трансформирование происходит в специальных устройствах — турбогенераторах. По сути, это машины, приводящиеся в работу газовым или паровым потоком. Отдельно стоит отметить гидрогенераторы — использующие преобразование энергии падающей воды.
Тепловые Электрический ток генерируется из-за возникновения разности температур при контакте металлов или полупроводников. Природные свойства заставляют носители зарядов переходить с нагретого вещества. Значение тока пропорционально разности температур. Такие устройства не могут обеспечить большую мощность, поэтому используются в качестве токовых датчиков (термопары). Хотя при этом существуют альтернативные источники, использующие распад изотопов.
Световые Разработки такого вида источников начались в конце ХХ века — солнечные батареи. В их работе используется свойство полупроводников генерировать электричество при бомбардировке их квантами света.
Химические Это большая группа генераторов тока, в основе которых применяется способность веществ при взаимодействии через электролит испускать энергию. По-другому их называют гальваническими. Например, к ним можно отнести аккумуляторы и простые батарейки.

Вне зависимости от типа устройства они все предназначены служить генераторами тока. Поэтому в схемах и технической литературе их обозначают одинаково. Условный знак сходен конденсатору только правая обкладка рисуется длиннее и обозначает положительный вывод.

Трактовка понятия в физике

Электрический двигатель, как и другие механизмы, служат для выполнения определенной работы, которую принято называть полезной. При осуществлении запланированной деятельности функционирующее устройство затрачивает энергию, эффективность которой определяют с помощью КПД.

КПД рассматривают, как взаимоотношение полезно использованной энергии по отношению к количеству энергии, полученной системой.

В данном случае умножение на 100% не несет содержательного смысла, так как 100%=1. По этой причине второй вариант записи формулы является менее предпочтительным (одну и ту же физическую величину выражают в различных единицах, независимо от формул, где она участвует).

Мощность ИТ и внутреннее сопротивление

Можно собрать последовательную схему, в которую войдут гальванический двухполюсник и сопротивление нагрузки. Двухполюсник, имеющий внутренний импеданс r и ЭДС – Е, отдаёт на внешнюю нагрузку R ток I. Задача цепи – питание электричеством активной нагрузки, выполняющей полезную работу. В качестве нагрузки может быть применена лампочка или обогреватель.


Простая схема для исследования зависимости Рполезн. от R

Рассматривая эту цепь, можно определиться с зависимостью полезной мощности от величины сопротивления. Для начала находят R-эквивалентное всей цепи.

Оно выглядит так:

Rэкв. = R + r.

Движение электричества в цепи находится по формуле:

I = E/(R + r).

В таком случае Р ЭДС на выходе составит Рвых. = E*I = E²/(R + r).

Далее можно найти Р, рассеиваемую при нагреве генератора из-за внутреннего сопротивления:

Pr = I² * r = E² * r/(R + r)².

На следующем этапе определяются с мощностью, отбираемой нагрузкой:

PR = I² * R = E² * R/(R + r)².

Общая Р на выходе двухполюсника будет равна сумме:

Рвых. = Рr + PR.

Это значит, что потери энергии изначально происходят при рассеивании на импедансе (внутреннем сопротивлении) двухполюсника.

Далее, чтобы увидеть, при какой величине нагрузки достигается максимальная величина полезной мощности Рполезн., строят график.

При его рассмотрении видно, что самое большое значение мощности – в точке, где R и r сравнялись. Это точка согласования сопротивлений генератора и нагрузки.

Внимание! Когда R > r, то ток, возникающий в цепи, мал для передачи энергии нагрузке с достаточной скоростью. При R. Наиболее наглядный пример согласования можно увидеть в радиотехнике при согласовании выходного сопротивления УНЧ (усилителя низкой частоты) и звуковых динамиков

На выходе усилителя сопротивление находится в пределах от 4 до 8 Ом, в то время как Rвх динамика составляет 8 Ом. Устройство позволяет подключить к своему выходному каскаду, как один динамик на 8 Ом, так и параллельно два по 4 Ома. И в том, и в другом случае УНЧ будет работать в заданном режиме, без потерь мощности

Наиболее наглядный пример согласования можно увидеть в радиотехнике при согласовании выходного сопротивления УНЧ (усилителя низкой частоты) и звуковых динамиков. На выходе усилителя сопротивление находится в пределах от 4 до 8 Ом, в то время как Rвх динамика составляет 8 Ом. Устройство позволяет подключить к своему выходному каскаду, как один динамик на 8 Ом, так и параллельно два по 4 Ома. И в том, и в другом случае УНЧ будет работать в заданном режиме, без потерь мощности.

В процессе разработок тех или иных реальных источников тока пользуются представлением его в виде эквивалентного блока. В его состав входят два компонента, с которыми ведётся работа: это идеальный источник и его импеданс.

Фактическая и номинальная мощность

При измерении мощности в потребителе формула мощности тока позволяет определить ее фактическую величину, то есть ту, которая реально выделяется в данный момент времени на потребителе.

В паспортах различных электрических приборов также отмечают значение мощности. Ее называют номинальной. В паспорте электрического прибора обычно указывают не только номинальную мощность, но и напряжение, на которое он рассчитан. Однако напряжение в сети может немного отличаться от указанного в паспорте, например, увеличиваться. С увеличением напряжения увеличивается и сила тока в сети, а следовательно, и мощность тока в потребителе. То есть значение фактической и номинальной мощности прибора могут отличаться. Максимальная фактическая мощность электрического устройства больше номинальной. Это сделано с целью предотвращения выхода прибора из строя при незначительных изменениях напряжения в сети.

Если цепь состоит из нескольких потребителей, то, рассчитывая их фактическую мощность, следует помнить, что при любом соединении потребителей общая мощность во всей цепи равна сумме мощностей отдельных потребителей.

КПД теплового двигателя

Максимальным КПД среди циклических машин, оперирующих при заданных температурах нагревателя T1 и холодильника T2, характеризуются тепловые двигатели, работающие по циклу Карно. В этом случае максимальный КПД составляет:

ηk = T1-T2 T1, где

T1 — это температура нагревателя,

T2 — температура холодильника.

Цикл Карно строится на четырех обратимых процессах, два из них основаны на постоянной температуре (изотермические), а два — на постоянной энтропии (адиабатные). 

Суть изометрического расширения строится на том, что в начале работы рабочее тело имеет температуру нагревателя. Когда рабочее тело расширяется, то его температура не падает благодаря передаче от нагревателя. Исходя из вышесказанного можно сделать вывод, что расширение осуществляется изотермически, то есть при постоянной температуре. За счет этого объем рабочего тела, которое осуществляет механическую работу, можно увеличить. Мощность энергии при этом возрастает.

Адиабатическое расширение в свою очередь представляет рассоединение рабочего тела от нагревателя. При этом теплообмен с окружающей средой продолжает расширяться. Ключевым моментом является тот факт, что температура тела уменьшается до температуры холодильника. В подобных случаях тело осуществляет механическую работу, а энтропия остается неизменной.

Изометрическое сжатие — это когда рабочее тело приводится в контакт с холодильником и от этого, под действием внешней силы, отдавая холодильнику количество теплоты, начинает изотермически сжиматься. Над телом совершается работа, и его энтропия уменьшается.

Суть адиабатического сжатия заключается в том, что рабочее тело отсоединяется от холодильника и сжимается под действием внешней силы без теплообмена с окружающей средой. При этом его температура увеличивается до температуры нагревателя, над телом совершается работа, его энтропия остается постоянной.

Ниже визуально представлена вся суть цикла Карно:

По закону сохранения энергии и по причине энергетических потерь, которые невозможно устранить, КПД реальных систем в любом случае меньше, чем единица. Таким образом, отсутствует возможность получить полезной работы больше или столько, сколько затрачено энергии. Наглядным примером является расход топлива. Например, из 100 л. только 40 л. выполняют полезную работу, а 60 затрачивается впустую на преодоление различного рода препятствия. 

Что касается закона сохранения энергии в пределах одного пространства энергия не может исчезнуть или появиться ниоткуда. В данном случае она из одной формы переходит в другую.

КПД котлов, которые функционируют на топливе органического происхождения, определяют в зависимости от низшей теплоты сгорания. При этом предполагается, что влага продуктов сгорания удаляется из котла в виде перегретого пара. В конденсационных котлах эта влага переходит в конденсат, а теплота конденсации полезно используется.

При расчете КПД по низшей теплоте сгорания показатель может составлять больше единицы. В данном случае целесообразно проводить расчеты по высшей теплоте сгорания с учетом теплоты конденсации пара. Но в этом случае характеристики рассматриваемого котла сложно сопоставить с параметрами других установок.

Преимуществом тепловых насосов, как нагревательной техники, является возможность получать больше теплоты, чем расходуется энергии на совершение ими работы. Холодильная машина способна отвести от охлаждаемого конца больше теплоты, чем затрачивается энергии на организацию процесса. В качестве показателя эффективности машин применяют холодильный коэффициент:

Q2А = Q2 Q1-Q2 

где Q — тепло, отбираемое от холодного конца (в холодильных машинах холодопроизводительность);

A — работа или электрическая энергия, которую тратят в процессе.

В случае тепловых насосов применимо понятие коэффициента трансформации:

η = Q1А= Q1Q1-Q2, где

Q — тепло конденсации, которое передается теплоносителю;

A — затрачиваемая на этот процесс работа (или электроэнергия).

При рассмотрении идеальной машины:

η = Q1-Q2Q1 = T1-T2T1, где 

T1 — температура нагревателя,

T2 — температура холодильника.

Таким образом, максимально высокой производительностью отличаются холодильные машины, функционирующие на обратном цикле Карно.

Данная величина не ограничена в значении. К этой характеристике достаточно сложно приблизиться на практике. Допустимо значение холодильного коэффициента больше единицы, что не противоречит первому началу термодинамики, так как, кроме учитываемой энергии A, в тепло Q идет и энергия, отбираемая от холодного источника.

Исследование мощности и КПД генератора тока

Схема стабилизатора тока на полевом транзисторе

Максимальная полезная Pmax и максимальный КПДmax – несовместимые понятия. Нельзя добиться максимального КПД источника при максимальной мощности. Это обусловлено тем, что Р, отдаваемая двухполюсником, достигнет своего максимального значения только при условии согласования сопротивления нагрузки и внутреннего импеданса ИТ:

R = r.

В этом случае КПД источника будет:

η = R/ R+r = r/ r+r = 1/2, что составляет всего 50%.

Для согласования двухполюсника и нагрузки применяют электронные схемы или согласующие блоки, для того чтобы добиться максимального отбора мощности от источника.

Что такое источник тока

Чтобы поддерживать ток в электрических цепях долгое время необходимо удерживать стабильное значение электрического поля. Именно в этом заключается роль источников электрического тока.

Во всех источниках происходит работа по разделению отрицательно и положительно заряженных частиц. Частицы с зарядами разных знаков скапливаются у полюсов источника тока (“плюса” и “минуса”), которые обозначены специальными клеммами. Между полюсами возникает разность потенциалов и электрическое поле, которое после подключения источника проводниками к электрической цепи, порождает электрический ток.

Первый вариант работающей батареи сконструировал итальянский ученый Алессандро Вольта в 1798 г. А в 1859 г. французский физик Гастон Планте свинцово-кислотные клетки — ключевой элемент аккумулятора для автомобиля. Кстати, автомобиль появился только через 26 лет.

Таким образом, внутри источника тока совершается работа по разделению электрических зарядов, без использования силового действия электрического поля. Силы, совершающие работу по сортировке (разделению) зарядов, по определению называются сторонними силами. Перечислим некоторые примеры сторонних сил:

Механические силы

Простейший пример — это электрофорная машина, диски которой приводятся во вращение рукой. Современные генераторы электрического тока преобразуют механическую энергию вращения вала от двигателей внутреннего сгорания или от паровых и гидротурбин;

Рис. 1. Электрофорная машина:.

Тепловое воздействие

Такие источники называют термоэлементами. Примером может служить так называемая термопара, то есть когда берутся две проволоки из разных металлов, делаются два спая, один из которых нагревают, а другой охлаждают. В результате появляется напряжение. Величина напряжения таких источников мала, но в они используются в качестве термодатчиков. Геотермальные станции, работающие в местах, где имеются природные источники горячей воды, также относятся к этому виду источников. ;

Фотоэффект

Энергия фотонов света переходит в электрическую энергию, когда твердое тело обладает свойствами полупроводника. К таким веществам относятся, например, кремний, германий, арсенид галлия. Солнечные батареи, которые были в первую очередь разработаны для космических кораблей, сейчас используются повсеместно;

Химические реакции

Набор определенных химических веществ может вступать в реакции, в результате которых внутренняя энергия переходит в электрическую. Такие источники тока называются гальваническими элементами в честь итальянского ученого Луиджи Гальвани. Батарейки для современных гаджетов, телевизионных пультов, все это — гальванические элементы. Батарейки используются один раз, так как после окончания химического процесса электроды теряют способность к накоплению зарядов;

Рис. 2. Гальванический элемент:.

Аккумуляторы

Данные источники тока выделены в отдельный класс, хотя механизм получения электрической энергии у них тоже основан на химических реакциях. В этих источниках электроды не расходуются. После подзарядки от электрической сети, источники снова возобновляют механизм химического воспроизводства электрической энергии.

Рис. 3. Примеры аккумуляторов:.

КПД в термодинамике

В термодинамике КПД — очень важная величина. Она полностью определяет эффективность такой штуки, как тепловая машина.

Тепловой двигатель (машина) – это устройство, которое совершает механическую работу циклически за счет энергии, поступающей к нему в ходе теплопередачи.

Схема теплового двигателя выглядит так:

У теплового двигателя обязательно есть нагреватель, который (не может быть!) нагревает рабочее тело, передавая ему количество теплоты Q1 или Qнагревателя (оба варианта верны, это зависит лишь от учебника, в котором вы нашли формулу).

Рабочее тело — это тело, на котором завязан процесс (чаще всего это газ). Оно расширяется при подводе к нему теплоты и сжимается при охлаждении. Часть переданного Q1 уходит на механическую работу A. Из-за этого производится движение.

Оставшееся количество теплоты Q2 или Qхолодильника отводится к холодильнику, после чего возвращается к нагревателю и процесс повторяется.

КПД такой тепловой машины будет равен:

КПД тепловой машины

η = (Aполезная/Qнагревателя) * 100%

η — коэффициент полезного действия

Aполезная — полезная работа (механическая)

Qнагревателя — количество теплоты, полученное от нагревателя

Если мы выразим полезную (механическую) работу через Qнагревателя и Qхолодильника, мы получим:

A = Qнагревателя — Qхолодильника.

Подставим в числитель и получим такой вариант формулы.

КПД тепловой машины

η = Qнагревателя — Qхолодильника/Qнагревателя * 100%

η — коэффициент полезного действия

Qнагревателя — количество теплоты, полученное от нагревателя

Qхолодильника — количество теплоты, отданное холодильнику

А возможно ли создать тепловую машину, которая будет работать только за счет охлаждения одного тела?

Точно нет! Если у нас не будет нагревателя, то просто нечего будет передавать на механическую работу. Любой такой процесс — когда энергия не приходит из ниоткуда — означал бы возможность существования вечного двигателя.

Поскольку свидетельств такого процесса в мире не существует, то мы можем сделать вывод: вечный двигатель невозможен. Это второе начало термодинамики.

Запишем его, чтобы не забыть:

Невозможно создать периодическую тепловую машину за счет охлаждения одного тела без изменений в других телах.

Найти КПД тепловой машины, если рабочее тело получило от нагревателя 20кДж, а отдало холодильнику 10 кДж.

Возьмем формулу для расчета КПД:

η = Qнагревателя — Qхолодильника/Qнагревателя * 100%

Ответ: КПД тепловой машины равен 50%

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Электрика
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: