Что такое индуктивная реактивность?

Формула расчета реактивного сопротивления

В общем случае для деталей катушечного типа применяются выражения:

X = L*w = 2* π*f*L.

Для конденсаторов применяют формулы:

X = 1/(w*C)= 1/(2* π*f*C).

Для конкретного элемента, нужные параметры которого известны, величина может быть вычислена с использованием онлайн калькулятора. В форму потребуется ввести нужные данные и нажать на кнопку, инициирующую расчеты.

Умение рассчитывать данную составляющую сопротивляемости поможет узнать величину тепловых потерь на используемых нагрузках. При параллельном подсоединении конденсатора с подходящей емкостью можно решить проблему энергетических потерь на индуктивных нагрузках.

Различия между активным и реактивным сопротивлением

Разница между активным и реактивным сопротивлением состоит в том, что при прохождении электротока по компонентам цепи, несущим активную нагрузку, имеют место мощностные потери в виде выделения тепла, которое не может быть снова превращено в электрическую энергию. В качестве наглядного примера можно привести конфорку электроплиты, выделяющую тепловую энергию. Такими свойствами обладают и осветительные устройства, электрические двигатели, различные кабели. Фазы проходящих через такие компоненты напряжения и электротока будут совпадать.

Внутреннее сопротивление – формула

Реактивные нагрузки отличаются наличием емкостных свойств либо способностью к индукции. В первом случае величина рассматриваемого сопротивления зависит от емкости, во втором – от электродвижущей силы самоиндукции.

Важно! Величина, в противоположность активной, может иметь плюсовой и минусовой знаки. Это зависит от того, в какую сторону идет фазовый сдвиг

При опережении электрическим током напряжения будет иметь место отрицательный показатель, в обратном случае – положительный.

Полезные примеры из жизни

Как продлить ресурс лампы накаливания

В пожарном депо Ливермоля (Калифорния) зарегистрирован рекорд рабочего режима осветительной лампы: 117 лет. Она практически непрерывно выполняет свою задачу с 1901 года по настоящее время.

Такой ресурс обеспечен за счет:

  • правильного выбора сопротивления, ограничивающего ток через нить накала и создания экономного режима освещения;
  • беспрерывной работы, исключающей переходные процессы при включениях/выключениях, сопровождаемые бросками токов;
  • надежной конструкции.

Как регулировать токи от 100 ампер в силовой цепи

Этот случай я привожу не для повторения, а с целью расширения кругозора и лучшего уяснения процессов, происходящих в электричестве.

Ни один обычный резистор не способен длительно выдерживать токи такой величины. Он просто сгорит. Однако при наладке промышленных генераторов требуется иметь устройство, справляющееся с подобными мощностями.

Это водяной реостат, состоящий из металлического корпуса — ведра прямоугольной формы, служащего одним из контактов для подключения провода от нагрузки.

Второй контакт составляет металлический нож, подключаемый через изоляторы.

Внутрь ведра наливают воду и засыпают соль: создают электролит, хорошо проводящий большие токи.

Перемещение ножа в электролите меняет сопротивление среды и обеспечивает регулировку высоких токов. Проводимость можно изменять концентрацией соли в растворе.

Напоминаю: подобное устройство нельзя использовать в бытовых цепях: оно не отвечает требованиям безопасности.

Таким образом, под каждый конкретный случай расчета используется своя формула электрического сопротивления, которой следует внимательно пользоваться. Исключить ошибки в расчетах помогает специализированный онлайн калькулятор.

По этой теме рекомендую посмотреть видеоролик Владимира Романова.

Если хотите задать вопрос или дополнить информацию, то воспользуйтесь разделом комментариев.

Что такое активное сопротивление

Активное нагрузочное сопротивление – это та его форма, которая наблюдается при безвозвратной трансформации электрической энергии в другие ее виды, например, тепловую (как в электроплите), световую или механического движения. На элементе, имеющем активное сопротивление, падает цепное напряжение, притом, чем больше падение, тем больше  значение резистивности. Кроме того, когда по такому компоненту идет ток, происходят безвозвратные потери мощности. В качестве иллюстрации можно упомянуть выделение тепла на резисторе. Таким противодействием обладают также проводники и конфигурации из них, в том числе кабели, которыми компоненты цепи соединяют друг с другом, и обмотки электрических моторов.

Определение значения осуществляется посредством формулы:

R=U/I.

Напряжение на детали делится на проходящий через нее электроток. На результат влияют различные характеристики провода: материал, конфигурация, геометрические параметры, температура.

Как рассчитать сечения кабеля по мощности

При достаточном значении сечения кабеля электрический ток будет проходить до потребителя, не вызывая нагрева. Почему происходит нагрев? Постараемся объяснить максимально доступно. К примеру, в розетку включён чайник потребляемой мощностью 2 киловатта, но идущий к розетке провод может передать для него ток мощностью только 1 киловатт. Пропускная способность кабеля связана с сопротивлением проводника — чем оно больше, тем меньший ток может передаваться по проводу. В результате высокого сопротивления в проводке и происходит нагрев кабеля, постепенно разрушающий изоляцию.

При соответствующем сечении электрический ток доходит до потребителя в полном объёме, и нагревание провода не происходит. Поэтому, проектируя электропроводку, следует учитывать потребляемую мощность каждого электрического прибора. Это значение можно узнать из технического паспорта на электроприбор или из наклеенной на нём этикетки. Суммируя максимальные значения и используя нехитрую формулу:

и получаем значение общей силы тока.

Pn обозначает указанную в паспорте мощность электроприбора, 220 — номинальный вольтаж.

Для трехфазной системы (380 В) формула выглядит так:

Полученное значение I измеряется в Амперах, и на основании него и подбирается соответствующее сечение кабеля.

Известно, что пропускная способность медного кабеля составляет 10 А/мм, для алюминиевого кабеля значение пропускной способности составляет 8 А/мм.

Для того чтоб рассчитать сечение кабеля нужно величину тока разделить на 8 или 10, в зависимости от вида кабеля. Полученный результат и будет размером сечения кабеля.

Например рассчитаем величину сечения кабеля для подключения стиральной машины, потребляемая мощность которой составляет 2400 Вт.

I=2400 Вт/220 В=10,91 А, округлив получаем 11 А.

Дальше, чтоб увеличить запас прочности, согласно правилу «пяти ампер» к полученному значению силы тока нужно прибавить еще 5 А:

11 А+5 А=16 А.

Если учитывать, что в квартирах используют трехжильные кабеля и посмотреть по таблице, то к 16 А близкое значение 19 А, поэтому для установки стиральной машины потребуется провод, сечение которого не меньше 2 мм².

Таблица сечения кабеля относительно величины силы тока

Сечение токо- прово- дящей жилы(мм2)   Ток(А), для проводов, проложенных
  Откры- то   в одной трубе
  двух одно- жильных трех одно- жильных четырех одно- жильных одного двух- жильного одного трех- жильного
0,5 11
0,75 15
1 17 16 15 14 15 14
1,2 20 18 16 15 16 14,5
1,5 23 19 17 16 18 15
2 26 24 22 20 23 19
2,5 30 27 25 25 25 21
3 34 32 28 26 28 24
4 41 38 35 30 32 27
5 46 42 39 34 37 31
6 50 46 42 40 40 34
8 62 54 51 46 48 43
10 80 70 60 50 55 50
16 100 85 80 75 80 70
25 140 115 100 90 100 85
35 170 135 125 115 125 100
50 215 185 170 150 160 135
70 270 225 210 185 195 175
95 330 275 255 225 245 215
120 385 315 290 260 295 250
150 440 360 330
185 510
240 605
300 695
400 830

Что такое УЗО в электрике: разновидности, принцип работы


Подключение двухклавишного выключателя: схемы, советы, инструкция

Различия между активным и реактивным сопротивлением

Разница между активным и реактивным сопротивлением состоит в том, что при прохождении электротока по компонентам цепи, несущим активную нагрузку, имеют место мощностные потери в виде выделения тепла, которое не может быть снова превращено в электрическую энергию. В качестве наглядного примера можно привести конфорку электроплиты, выделяющую тепловую энергию. Такими свойствами обладают и осветительные устройства, электрические двигатели, различные кабели. Фазы проходящих через такие компоненты напряжения и электротока будут совпадать.

Полное сопротивление

Реактивные нагрузки отличаются наличием емкостных свойств либо способностью к индукции. В первом случае величина рассматриваемого сопротивления зависит от емкости, во втором – от электродвижущей силы самоиндукции.

Важно! Величина, в противоположность активной, может иметь плюсовой и минусовой знаки. Это зависит от того, в какую сторону идет фазовый сдвиг

При опережении электрическим током напряжения будет иметь место отрицательный показатель, в обратном случае – положительный.

Сравнение влияния реактивного сопротивления на активную мощность сети

Из рисунков 1 и 2 видно, что сдвиг фаз на рисунках не одинаков. Вывод — чем больше в полном сопротивлении Z будет влияние XLили  X тем больше будет разница фаз U и I.

Угол сдвига между током и напряжением называется φ .

Реактивная мощность однофазная:

Трехфазная:

Uф, Iф — фазные ток и напряжение

Вывод: реактивная мощность – не выполняет полезного действия.

Она «перегоняется» по сети нагревая кабели и увеличивая потери. На крупных промышленных предприятиях это особо ощутимо в силу наличия электроприводов  и других крупных потребителей. Этот вопрос очень актуален для энергосбережения и модернизации производства. Поэтому на пром. предприятиях устанавливаются компенсаторы реактивной мощности. Они могут быть разного типа и кроме компенсации выполнять еще и роль фильтров. С помощью компенсаторов стараются сохранить баланс реактивной мощности для минимизации ее влияния на сеть и подогнать угол φ к нулю.

Для компенсации реактивной мощности необходимо максимально сбалансировать в сети количество (L, C) элементов.

Расчет с помощью удельного сопротивления

Расчет сопротивления проводника можно произвести без измерения величин напряжения и тока. Но для этого необходимо знать дополнительную информацию о проводнике.

Рис. 3. Проводник с поперечным сечением S и длиной L, через который течет ток I.

Георг Ом и другие исследователи опытным путем определили, что сопротивление проводника прямо пропорционально длине проводника L и обратно пропорционально площади поперечного сечения проводника S. Эту закономерность можно описать формулой расчета сопротивления проводника:

$ R = ρ *{ L\over S} $ (2)

Коэффициент ρ был назван удельным сопротивлением. Эта физическая величина отражает особенности конкретного вещества, которые зависят от плотности вещества, кристаллической структуры, строения атомов и других внутренних параметров. Расчет удельного сопротивления проводника производить каждый раз необязательно, так как для большинства веществ удельные сопротивления измерены и сведены в справочные таблицы, которые можно найти в бумажных справочниках или в их интернет-версиях.

Но если такая необходимость возникнет, то из формулы (2) можно получить следующую формулу (3), и по ней рассчитать ρ:

$ ρ = R*{ S\over L } $ (3)

Серебро имеет одно из самых низких значений ρ, равное $ 0,016 {Ом*мм^2\over м} $. Этим объясняется использование такого довольно дорогого металла для пайки особенно важных радиодеталей (микросхем, микропроцессоров, электронных плат), которые должны как можно меньше нагреваться в процессе работы.

Выбор сечения кабеля

По кабелям, соединяющим инвертор и аккумуляторные батареи, протекает очень большой ток. Поэтому необходимо правильно выбрать сечение кабеля исходя из максимальных токов, которые может потреблять инвертор

Очень важно, чтобы соединения были надежными и имели малое сопротивление. Для того, чтобы минимизировать падение напряжения в проводах между аккумуляторной батареей и, тем самым, увеличить эффективность использования инвертора, кабель должен быть достаточно толстым и максимально коротким

Рекомендуемое сечение кабеля для длины 2 м:

Сечение кабеля от АБ до инвертора (длина 2 м)
Мощность инвертора, Вт Напряжение АБ, В
12 24 48
150 10 мм 2 6 мм 2
250 16 мм 2 6 мм 2
500 35 мм 2 10 мм 2
1000 50 мм 2 25 мм 2
1500 50 мм 2 35 мм 2
2000 70 мм 2 50 мм 2
2500 95 мм 2 70 мм 2 50 мм 2
3000 95 мм 2 50 мм 2
3500 95 мм 2 70 мм 2
4500 70 мм 2

Во многих инструкция к оборудованию, произведенному в Америке или для американского рынка, упоминаются размеры проводов в калибре AWG (American Wire Gauge). Ниже приведена таблица для перевода AWG в метрическую систему измерений.

Преобразование American Wire Gauge в мм 2
AWG Максимальный ток на 1 проводник, А Сечение, мм 2
20 7 0.52
18 10 0.82
16 15 1.31
14 20 2
12 25 3.31
10 40 6.68
8 65 8.37
6 95 13.3
4 125 21.15
2 170 33.62
1 195 42.41
1/0 230 53.5
2/0 265 67.43
3/0 310 85
4/0 360 107.2
250 405 126.7
300 445 152
500 620 253.4
750 785 300.66
1000 935 506.7

Для того, чтобы рассчитать необходимое сечение провода для конкретной установки, нужно знать мощность инвертора или зарядного устройства, или максимальный протекающий ток через эти провода. Также нужно знать расстояние от АБ до инвертора и напряжение постоянного тока в системе.

Обычно, большинство систем с напряжением 12В работает при напряжении в диапазоне от 11 до 12 В. Но, если это возможно, нужно выбирать кабель таким образом, чтобы падение напряжения в проводах было не более 2%, т.е. не более 0,25В. (См. Таблицу 2.)

Можно воспользоваться следующей формулой для выбора сечения провода: R = E / I x L

R = удельное сопротивление провода в Ом/м

E = максимально допустимое падение напряжение в проводе, В

I = пропускаемый ток, А

L = общая длина кабеля в системе в метрах (умножить на 2 для положительного и отрицательного провода).

Нагрузка мощностью 60 Вт (ток будет равен 60/12 = 5A) находится на расстоянии 10 м от АБ напряжением 12В. Максимально допустимое падение напряжения составляет 2% (0.25 В):

R = 0.25 В / = 0.0025 Ом/м.

Удельное сопротивление провода должно быть меньше 0.0025 Ом/м. Из Таблицы 1 получаем минимальное сечение провода 6 мм 2 . Чем толще провод, тем меньше будет потерь при передаче энергии от АБ к нагрузке.

В более высоковольтных системах падение напряжения не так сильно сказывается на работе — так, для системы с напряжением 48 В те же допустимые 2% составляют уже 1 В, и для передачи одинаковой мощности требуется провод меньшим сечением.

Параллельное соединение

Такое соединение резисторов получается путём объединения двух и более электрических устройств, при котором их одни выводы соединяются друг с другом и образовывают первую общую точку, а другие, аналогично первым, образовывают вторую общую точку. В этом случае напряжение на всех элементах одинаковое, а проходящая сила тока зависит от их импеданса.

Формула параллельного соединения резисторов выглядит следующим образом:

R = (R1*R2*R3…*Rх) / (R1+R2+R3…+Rх), где Rх – порядковый номер резистора.

Отсюда следует, что сила тока, протекающая через каждый проводник, находится по формуле: In = U/Rn.

Исходя из этого, при параллельном соединении результирующий импеданс двух и более резисторов будет меньше самого меньшего значения сопротивления в соединении. При этом когда параллельно включены только два резистора, имеющие одинаковый номинал, то их можно заменить эквивалентом, равным одной второй от величины этого номинала.

Так можно соединить и сотню резисторов, тогда эквивалентное сопротивление определяется как сотая часть от номинала. Например, пусть будет участок схемы с десятью резисторами, включёнными параллельно друг другу с номиналом каждого равного 10 Ом, тогда общее сопротивление будет составлять десятую часть, а именно Rоб = 10/10 = 1 Ом.

Пример подбора замены

При разработке прибора возникла потребность использовать на участке цепи резистор с сопротивлением 6 Ом. При изучении номинального ряда стандартных значений, выпускаемых промышленностью, можно отметить, что резистора на 6 Ом в нём нет.

Для получения нужного значения понадобится воспользоваться параллельным включением двух элементов. Эквивалентное значение сопротивления для двух резисторов в таком случае находится в следующем порядке:

  • 1/R = (1/R1) + (1/R2);
  • 1/R = (R1+R2) / (R1*R2);
  • Rэ = (R1*R2) / (R1+R2).

Из решения видно, что если R1 совпадает по номиналу с R2, то общая величина сопротивления равна половине значения одного из элементов. Поэтому при требуемом номинале, равном 6 Ом, это значение составит: Rx = 2*6 = 12 Ом. Для проверки результата следует подставить полученный ответ в формулу: Rэ = (R1*R2) / (R1+R2) = (12*12) / (12+12) = 6 Ом.

Задача на нахождение эквивалента

Пусть существует схема с тремя параллельно включёнными резисторами и для её упрощения необходимо заменить их одним элементом. Номиналы проводников составляют: R1 = 320 Ом, R2= 10 Ом, R3 = 1 кОм. Для решения задачи используется уже известная формула:

  • 1/R = (1/R1) + (1/R2) + (1/R3);
  • Rэкв = (R1*R2*R3) / (R1+R2+R3).

Перед тем как подставлять величины в формулу, их все понадобится привести к международной системе единиц (СИ). Так, один килоОм равен 1000 Ом, при подставлении этого значения получается ответ: Rэ = (320*1*1000) / (320+10+1000) = 2406 Ом или 2,4 кОм, что как раз соответствует величине из стандартного ряда. Такая методика расчёта применяется для любого количества параллельно соединённых резисторов.

Расчет эквивалентного сопротивления элементов цепи

Определение общего цепного сопротивления будет зависеть от того, какого типа конфигурацию составляют компоненты цепи. Для параллельного и последовательного подключений правила расчета будут неодинаковыми. Опираться при вычислениях нужно на закон Ома.

Согласно ему, у всех последовательно соединенных деталей, подключенных в цепь переменного тока, будет одно и то же значение электротока:

I=U/Z, где Z – общий импеданс цепи.

Напряжения будут различаться и окажутся привязанными к сопротивлениям деталей: на концах резистора его значение будет равно UR = IR (здесь R – активная резистивность элемента), для дросселя – UL = IXL, для емкостного элемента – UC = IXC (XL и XC – реактивные показатели соответствующих устройств). Так как векторы напряженности катушки и конденсатора имеют противоположные направления, суммарный показатель на реактивных деталях будет равен: UX = UL – UC . Противодействие будет равно: X = XL – XC.

Напряжения (общее, реактивное и активное) могут быть представлены в виде прямоугольного треугольника. Из него получается, что U² = UR² + UX². Поскольку противодействия входящих в цепь компонентов пропорциональны напряжениям, имеем Z2=R2+X2=R2+(XL – XC)2.

Для параллельного соединения принято выводить значения импеданса из проводимостей элементов, которые обратны их сопротивлениям. Отсюда 1/z2 = 1/R2 + 1/X2. Таким образом, выходит следующая формула:

Z2=1/(1/R2+(1/ XL – 1/ XC)2).

Общее сопротивление определяется компонентным составом цепи и характером соединения ее элементов. При расчетах показателей используется закон Ома.

Как рассчитать емкостное реактивное сопротивление

Рассмотрим пример расчета емкостного реактивного сопротивления: предположим, что конденсатор 6 мкФ подключен к розетке переменного тока с напряжением 40 В и частотой F 60 Гц.

Для определения емкостного реактивного сопротивления используется определение, данное в начале. Угловая частота ω определяется как:

ω = 2πf = 2π x 60 Гц = 377 с-1

Затем этот результат подставляется в определение:

ИксC = 1 / ωC = 1 / (377 с-1х 6 х10 -6 F) = 442,1 Ом

Теперь посмотрим на амплитуду тока, циркулирующего в цепи. Поскольку источник предлагает напряжение амплитудой VC = 40 В, мы используем соотношение между емкостным реактивным сопротивлением, током и напряжением для вычисления амплитуды тока или максимального тока:

яC = VC / ИКСC = 40 В / 442,1 Ом = 0,09047 А = 90,5 м А.

Если частота становится очень большой, емкостное реактивное сопротивление становится небольшим, но если частота становится равной 0 и у нас есть постоянный ток, реактивное сопротивление стремится к бесконечности.

Треугольник сопротивлений

Цепи переменного тока обладают полным сопротивлением. Полное сопротивление цепи определяется как сумма квадратов активного и реактивного сопротивлений

Графическим изображением этого выражения служит треугольник сопротивлений, который можно получить в результате расчёта последовательной RLC-цепи. Выглядит он следующим образом:На треугольнике видно, что катетами являются активное и реактивное сопротивление, а полной сопротивление гипотенуза.Величина и начальная фаза переменного тока, создаваемого переменным напряжением, зависят не только от величины сопротивлений, образующих электрическую цепь, но и от индуктивности и емкости этой цепи.Активное сопротивление в цепи переменного тока.Строго говоря, любая электрическая цепь обладает, кроме сопротивления, также индуктивностью и емкостью. Если по проводнику проходит ток, то вокруг него возбуждается магнитное поле, т.

е. имеют место явления индуктивности. Ток возникает под действием электрического поля на заряды, следовательно, проводник должен обладать емкостью, так как в диэлектрической среде вокруг него возникает поток смещения.Однако в ряде случаев относительная роль двух из трех параметров  R, L, С в электрической цепи практически незначительна.

Это позволяет рассматривать подобную цепь как обладающую только сопротивлением, или только индуктивностью, или только емкостью.Мы рассмотрим поочередно условия в трех таких простейших цепях переменного тока.В цепи, содержащей только сопротивление г, синусоидальное напряжени u = Um sin ?t источника электроэнергии создает ток:i = u : r = (Um: r ) sin ?tТак как сопротивление r от времени не зависит, то в этой цепи ток совпадает по фазе с напряжением (рис. 1) и изменяется также синусоидально:i = Imsin ?tздесь:Im= Um: rРисунок 1 Кривые мгновенных значений напряжения и тока в цепи,содержащей только сопротивление r.Разделив последнее выражение на , получим формулу закона Омадля действующих значений напряжения и тока:I = U : rКак видно из формулы, этот закон для цепей переменного тока, содержащих только сопротивление r, имеет такой же вид, как и закон Ома для цепи постоянного тока.В цепи переменного тока сопротивление r называется активным сопротивлением. Это сопротивление, в котором электроэнергия преобразуется в другую форму (в теплоту и др.).Оно может существенно отличаться от сопротивления rпри постоянном токе.

Сопротивление для постоянного тока называют омическим, чтобы отличить его от активного сопротивления для переменного тока.Различие между активным и омическим сопротивлениями обуславливается рядом причин. Одна из них – поверхностный эффект, частичное вытеснение переменного тока в поверхностные слои проводника.Чем больше частота переменного тока, тем это вытеснение значительнее. Из-за поверхностного эффекта сопротивлениеrоказывается уже существенно большим, чем вычисленное по формуле:r = ?

(l : S)Поверхностный эффект создается тем, что переменное магнитное поле индуктирует во внешних слоях проводника меньшую ЭДС самоиндукции, чем во внутренней его части.Особенно сильно поверхностный эффект увеличивает активное сопротивление стальных проводов. На активное сопротивление медных и алюминиевых проводов при промышленной частоте поверхностный эффект существенно влияет только при больших сечениях проводов (свыше 25 кв. мм).Кроме поверхностного эффекта, большое увеличение активного сопротивления электрической цепи могут вызывать потери энергии в переменном электромагнитном поле цепи от гистерезиса и вихревых токов.Поделитесь полезной статьей:

https://youtube.com/watch?v=NSxgxMNG2fwrel%3D0%26amp%3Bcontrols%3D0%26amp%3Bshowinfo%3D0

  • electrosam.ru
  • electrono.ru
  • electroandi.ru
  • fazaa.ru

Активное сопротивление. Действующие значения силы тока и напряжения

Подробности
Просмотров: 658

«Физика — 11 класс»

Активное сопротивление

Сила тока в цепи с резистором

Есть цепь, состоящая из соединительных проводов и нагрузки с малой индуктивностью и большим сопротивлением R.

Сопротивление R называется активным сопротивлением, т.к. при наличии нагрузки, обладающей этим сопротивлением, цепь поглощает энергию, поступающую от генератора.
Эта энергия превращается во внутреннюю энергию проводников — они нагреваются.
Напряжение на зажимах цепи меняется по гармоническому закону:

u = Um cos ωt

Мгновенное значение силы тока прямо пропорционально мгновенному значению напряжения.
По закону Ома мгновенное значение силы тока:

В проводнике с активным сопротивлением колебания силы тока совпадают по фазе с колебаниями напряжения, а амплитуда силы тока определяется равенством

Мощность в цепи с резистором

В цепи переменного тока промышленной частоты (v = 50 Гц) сила тока и напряжение меняются.
При прохождении тока по проводнику, например по нити электрической лампочки, количество выделенной энергии также будет меняться во времени.

Мощность в цепи постоянного тока на участке с сопротивлением R определяется формулой

Р = I2R

Мгновенная мощность в цепи переменного тока на участке, имеющем активное сопротивление R, определяется формулой

Р = i2R

Cреднее значение мощности за период (используем формулу для мгновенного значения силы тока и выражение ):

График зависимости мгновенной мощности от времени (рис.а)

Тогда средняя мощность равна:

Действующие значения силы тока и напряжения.

Среднее за период значение квадрата силы тока:

Величина, равная квадратному корню из среднего значения квадрата силы тока, называется действующим значением силы переменного тока.
Действующее значение силы переменного тока обозначается через I:

Действующее значение силы переменного тока равно силе такого постоянного тока, при котором в проводнике выделяется то же количество теплоты, что и при переменном токе за то же время.

Действующее значение переменного напряжения определяется аналогично:

Закон Ома для участка цепи переменного тока с резистором в действующих значениях:

В случае электрических колебаний важны общие характеристики колебаний, такие, как амплитуда, период, частота, действующие значения силы тока и напряжения, средняя мощность.
Именно действующие значения силы тока и напряжения регистрируют амперметры и вольтметры переменного тока.

Действующие значения непосредственно определяют среднее значение мощности Р переменного тока:

р = I2R = UI.

Итак:
Колебания силы тока в цепи с резистором совпадают по фазе с колебаниями напряжения, а мощность определяется действующими значениями силы тока и напряжения.

Следующая страница «Конденсатор в цепи переменного тока»

Назад в раздел «Физика — 11 класс, учебник Мякишев, Буховцев, Чаругин»

Электромагнитные колебания. Физика, учебник для 11 класса — Класс!ная физика

Свободные и вынужденные электромагнитные колебания. Колебательный контур. Превращение энергии при электромагнитных колебаниях —
Аналогия между механическими и электромагнитными колебаниями —
Уравнение, описывающее процессы в колебательном контуре. Период свободных электрических колебаний —
Переменный электрический ток —
Активное сопротивление. Действующие значения силы тока и напряжения —
Конденсатор в цепи переменного тока —
Катушка индуктивности в цепи переменного тока —
Резонанс в электрической цепи —
Генератор на транзисторе. Автоколебания —
Краткие итоги главы

Формулы

Для расчета предварительно вводятся некоторые нормированные величины (с шириной полосковой линии W, расстоянием между проводниками S и высотой подложки H).

\

Данный метод расчетов применим при:

\

В этих диапазонах приведенные формулы сохраняют свою точность.

Статическая диэлектрическая проницаемость при возбуждении четного типа:

\

где

\

\[a_e(v) = 1 + \frac{1}{49} \ln\left( {v^4 + (v/52)^2 \over v^4 + 0,432} \right) + \frac{1}{18,7} \ln \left( 1+ \left( \frac{v}{18,1}\right)^3 \right)\]

\

Статическая диэлектрическая проницаемость при возбуждении нечетного типа:

\

где

\

\

\

\

Статическое волновое сопротивление одиночного проводника при возбуждении четного типа:

\

где

\

\

\

\

Формулы расчета ZL и εэфф для одиночной микрополосковой линии можно посмотреть на странице «Калькулятор волнового сопротивления микрополосковой линии (формула Хаммерстада-Дженсена)».

Статическое волновое сопротивление одиночного проводника при возбуждении нечетного типа:

\

где

\

\

\

\

\

\

Поправка на толщину полосковой линии:

\

\

\

\

где

  • εr – относительная диэлектрическая проницаемость изолирующего материала подложки;
  • H – высота подложки, мм;
  • W – ширина микрополосковой линии, мм;
  • S – расстояние между полосковыми линиями, мм;
  • T – высота микрополосковой линии, мм;
  • ZL – волновое сопротивление одиночной микрополосковой линии, Ом;
  • Wr – эффективная ширина микрополосковой линии, которая равна фактической ширине линии плюс поправка для учета не нулевой толщины металлизации, мм;
  • εr_’эфф – эффективная относительная диэлектрическая проницаемость изолирующего материала подложки;

Точность расчетов статических волновых сопротивлений (импедансов) лучше, чем 0,6%.

Предварительный расчёт мощности

Этот этап идёт первым, потому что собранные данные будут служить основой для проектирования.

Невозможно приступать к проектированию, если не известен спектр подключаемых приборов, их мощность и режим эксплуатации. При этом тип электрооборудования, имеет более весомое значение, нежели мощность при выборе сечения кабеля на калькуляторе.

Например, одинаковые по номинальной мощности приборы, могут работать в разных режимах, что сказывается на пиковых нагрузках – одно дело работа водогрейного бойлера мощностью 3 кВт, другое дело работа скважинного насоса мощностью 3 кВт. Ведь при включении насоса, в течении нескольких секунд потребляемая мощность превышает номинальную на 30-45%. Такой скачок обязательно выбьет пробки предохранителя, если этот фактор не был учтён на первом этапе подбора сечения кабеля на калькуляторе.

Мощность подключаемого оборудования берётся из паспорта изделия, а список всех электроприборов на данном объекте лучше разбить по конкретным комнатам.

Проектирование и расчёт сечения кабеля на онлайн калькуляторе

Этап видится сумбурным из-за обилия мелких деталей проекта, но разбивка объекта на несколько комнат, как-бы обнажает сценарий работ, позволяя через призму одного помещения, оценить масштабность задачи.

На листе бумаги рисуется отдельно каждая комната, и вносится список электроприборов для конкретного помещения.

Определяются точки подключения с привязкой к ним соответствующих устройств.

Например, в зале трёхкомнатной квартиры планируется использовать:

  • Кондиционер 2 кВт;
  • Телевизор 0,4 кВт;
  • Светодиодное освещение суммарной мощностью 200 ватт;
  • Музыкальный центр 0,5 кВт;
  • Гаджеты и прочие мелкие бытовые приборы суммарной мощностью 1 кВт.

Для потолочного освещения кидают отдельную линию 2 х 1,5 мм2.

Для кондиционера прокладывают отдельную цепь, сечение провода рассчитывается так 2000/220 = 10 А (с округлением в большую сторону). Добавляем 5 А (запас прочности) и подбираем провод для тока 15 Ампер.

Остальные устройства в сумме потребляют 2,1 кВт. Учитывая, что шанс их одновременного включения маловероятен, можно воспользоваться формулой расчёта сечения кабеля для кондиционера.

На основе вычислений для одного помещения, используя онлайн калькулятор, проводят расчёты для всей электропроводки. Но необходимо учитывать некоторые правила:

Для электроприборов высокой мощности, как-то: бойлер, электроплита, тёплые полы и т.п., прокладывается отдельная линия электропитания с индивидуальным автоматом отключения и УЗО;

Помещения с высокой влажностью, например санузел и кухня, запитываются по отдельной цепи от щитка, вне зависимости от суммарной нагрузки;

Отдельно прокладывают линию в каждую комнату для потолочного освещения;

Внутри квартиры разрешено использовать только медные провода.

Комплектация и монтажные работы

При выборе электроустановочных изделий старайтесь покупать все устройства от одного производителя. Если будет возможность, то приобретите дополнительную накладную панель на выключатель и розетку. Эксплуатироваться они будут долго, и в случае поломки будет замена из этой же коллекции.

Монтаж электроразводки не сложно выполнить самому. Главное – не спешить и соблюдать требования техники безопасности.

Запомнить самое важное

Даже если владелец сам организовывал элетроразводку, то уже через пару лет он забудет точное место расположения проводов при закрытом монтаже.

Поэтому обязательно нарисуйте схему расположения кабелей в стенах с указанием точного места по высоте. Отдельно в таблицу запишите какие марки проводов использовались.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Электрика
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: