Селективность защиты электрической сети

Принцип работы и функции

Главные функции селективности заключаются в:

  • обеспечении безопасной работы приборов в помещении;
  • мгновенном определении и обесточивании зоны питания, в которой произошла поломка, без других выключений приборов, не прекращающих подачу электрической энергии в местах стабильной работы техники;
  • снижении последствий после поломки приборов или техники;
  • уменьшении напряжения на составные приборы и предупреждении поломок в неисправной части;
  • обеспечении максимально возможной безостановочной подачи энергии;
  • обеспечении беспрерывного рабочего процесса;
  • обеспечении поддержки в том случае, если сама защита, отвечающая за размыкание, придет в неисправность;
  • поддержке оптимального функционирования установки;
  • обеспечении практичности в использовании и экономической доступности.

Вам это будет интересно Определение тока или напряжения в розетке


Определение избирательности

Виды селективной защиты разделяют на:

  • полную. Два устройства соединены последовательным соединением. При воздействии сверхтоков активируется только одна защита, которая находится ближе к зоне повреждения;
  • частичную. Похожа на полное, но защита действует только до определенного показателя перегрузки по току;
  • временную. Схема включает в себя несколько машин с одинаковыми токовыми параметрами, но с разным временем воздействия. В результате от ближайшего к поломке до самого удаленного выключателя устройства страхуют друг друга (например, ближайший будет работать через 0,02 сек., следующий через 0,5 сек., а последний — через 1 сек., если остальные 2 не работают).


Конструкция предохранителя Принцип действия текущей селективности защиты подобен времени, но только воздействие происходит по величине тока. Например, автоматические выключатели установлены на входе 25 А, затем 16 А, а затем 10 А. В то же время они могут иметь одинаковое время отключения. В дополнение к реакции защитных механизмов на ток также определяется время этой реакции.


Предохранители в щитке

При обнаружении некорректной работы в установке можно точно определить неисправную зону и отключить подачу электроэнергии только в нее. Все процессы предотвращения повреждений происходят в литом корпусе выключателя. Отключение происходит за такое короткое время, что отметка максимального значения тока не достигает своего результата.

К сведению! Избирательность защиты может быть абсолютной и относительной. В первом случае отключается только поврежденная часть цепи. По этому принципу работают предохранители, установленные в электроприборах.

Что такое время-токовые характеристики?

Надеясь на подготовленность читателя, буду краток и расскажу только о том, что касается темы статьи. Буквы В, С и D — это главная характеристика электромагнитного расцепителя. Буквой обозначается диапазон токов мгновенного расцепления. В начале этого диапазона ЭМ расцепитель не должен сработать, в пределах диапазона — может сработать, а при сверхтоке, равном верхнему краю диапазона (и больше), — должен сработать. Границы диапазонов можно проиллюстрировать на упрощенных графиках для трех АВ с одинаковым номинальным током 10 А, но с разными характеристиками отключения:

Графики для одного номинального тока и разных характеристик расцепления

График работы теплового расцепителя, показанный плавной жирной линией, одинаков для всех трех автоматических выключателей. А вот диапазоны токов мгновенного расцепления (закрашены синим) — разные.

При сверхтоке до 11,3 А три наших выключателя выключаться не должны никогда. При увеличении тока время выключения уменьшается вплоть до секунд, а при работе в так называемой зоне токов КЗ время выключения может составлять десятки и даже единицы миллисекунд. Все токи, которые превышают отмеченные диапазоны, должны приводить к мгновенному расцеплению.

Подробно о время-токовых характеристиках автоматических выключателей можно узнать в ГОСТ IEC 60898-1-2020.

Селективность и сверхток — какая связь?

Селективность может быть полной, когда вышестоящий АВ не отключится при любом токе КЗ, который ограничен отключающей способностью нижестоящего АВ.

На практике при использовании модульных автоматических выключателей удается достичь только частичной селективности, которая обеспечивается лишь в некотором диапазоне значений сверхтока. Верхняя граница зоны частичной селективности называется предельным током селективности Is. Частичная селективность по току будет обеспечена, если сверхток не будет больше тока селективности Is.

Максимальный сверхток в конкретной точке схемы равен току КЗ Iкз. Поэтому на практике можно считать, что полная селективность работы последовательно включенных АВ обеспечивается при Iкз ≤Is, а частичная — при Iкз>Is.

Когда селективность обеспечена, то в случае возникновения сверхтока ничего страшного не произойдет — просто сработает автомат проблемной линии, а остальные линии продолжат работать, как ни в чем не бывало.

В зоне токов перегрузки можно говорить о время-токовой селективности, поскольку на селективность влияет и уровень сверхтока, и время его действия. Но в зоне токов КЗ имеется только токовая селективность, поскольку время срабатывания электромагнитных расцепителей всех характеристик одинаково.

Официальные определения по теме селективности можно прочитать в ГОСТ Р 50030.2-2010 (в частности, п. 2.17).

Основные задачи селективной защиты

Селективность – это процесс, означающий выбор (отбор). Этот термин применим к разным отраслям и направлениям деятельности человека. Например, в химии, при протекании химических реакций, ведут речь об индексе селективности. При этом рассматривают избирательность химических превращений.

Что касается человека, то его восприятие окружающего мира, выбор информации, а также её запоминание носят избирательный характер.

Что же такое селективность в электрике, и для чего она нужна?

К задачам электрической селективной защиты относятся:

  • гарантия безопасности оборудования и обслуживающего персонала;
  • моментальное установление места повреждения и отключение только неисправного участка;
  • уменьшение отрицательных результатов влияния аварии на другие узлы и части электроприборов;
  • минимизация повреждений на неисправном участке;
  • гарантирование максимальной беспрерывности работы электросистемы;
  • достижение простоты эксплуатирования электрического оборудования.

К тому же селективность снижает последствия коротких замыканий и нагрузку на устройство.

Основные методы обеспечения селективности

Комплектация приборов в единую систему происходит в соответствии с главным требованием – при любом возникновении аварийной ситуации или образовавшемся повреждении должен сработать автомат, находящийся от места замыкания на самом приближенном расстоянии, а все остальные приборы находятся по-прежнему в замкнутом положении. Примером может быть неисправность поблизости розетки, когда происходит срабатывание выключателя розеточной группы определенного помещения, а все другие приборы продолжают находиться в рабочем состоянии.

Необходимо детальнее определится с практически существующими способами:

Токовая селективность

Вид, при котором существует прямая зависимость между силой тока при коротком замыкании и минимальным расстоянием от участка замыкания к источнику – токовая селективность. На практике этот метод выглядит следующим образом – со стороны питания производится установка автомата с защитой такого исполнения, которое не допускает срабатывания при возникновении на участке нагрузки короткого замыкания.
Для отключения автомата в случае замыкания его установка должна быть выполнена на стороне нагрузки. Наглядное изображение этого типа селективности выполнено на рисунке ниже:

Временной тип

На время срабатывания влияет следующий вид селективности – временной. Он выполняется способом установки автомата вблизи источника питания. При этом в первую очередь по отношению к месту замыкания будет срабатывать ближайшее к нему устройство. А все остальные из-за большего времени отключаться не будут.

Зонная селективность

Передача сигнала блокировки на уровень защиты с более высокими параметрами выполняется автоматом в случае превышения уставки тока короткого замыкания. Выключатель выполняет функцию проверки до момента срабатывания поступления такого же сигнала с нагрузочной стороны. Этим способом осуществляется срабатывание только в случае сигнала со стороны питания, все другие устройства будут находиться во включенном состоянии.

На рисунке изображен процесс в схематическом виде:

Времятоковая селективность

Большую актуальность данный тип имеет во всех защитных устройствах, обладающих времятоковыми характеристиками. Главный принцип рассматриваемого вида селективности состоит в потребности правильного подбора выключателей с такими параметрами, которые способны обеспечить более быстрое срабатывание системы защиты с нагрузочной стороны. Это должно происходить при любых параметрах тока гораздо быстрее, чем срабатывание выключателя со стороны источника питания.

Объективный анализ подобного явления возможен при рассмотрении самых плохих условий. Для примера попробуем разобраться в происходящем, допуская срабатывание выключателя со стороны питания по собственной нижней кривой, а устройство с нагрузочной стороны отключается на самом пике верхней кривой. Непременное условие состоит в том, чтобы зоны срабатывания для обоих приборов никоим образом не пересекались.

Вот как это выглядит в нашем конкретном случае – имеется схема, в которую входят автоматы «А» и «В». По заданным параметрам селективности необходимо, чтобы при токе одинакового значения первым всегда срабатывало устройство «В».

На рисунке, расположенном вверху, вы можете увидеть наиболее подходящий вариант расположения времятоковых кривых для обоих автоматов.

На представленном изображении можно убедиться в том, что при одинаковом значении тока первым произойдет отключение прибора «В».

Срабатывание данного устройства обеспечивает необходимую селективность. Итогом этого процесса является то, что питающая среагировавший автомат шина останется под напряжением.

Избежать негативных последствий перенапряжения или замыкания и обеспечить качественную защиту системы проводки можно проверенным способом. Еще на этапе проектирования и в процессе планировки схемы электроцепей и оборудования требуется тщательная разработка с обязательным учетом параметров селективности.

Таким образом, потребитель получает в свое распоряжение функцию автоматического определения зоны, где возникла неисправность, и локального отключения определенного участка без потери работоспособности остальных.

Все используемое оборудование снабжается максимально эффективной защитой, что обеспечивает безопасность людей и значительно повышает сроки эксплуатации электропроводки и бытовых приборов.

← Предыдущая страница
Следующая страница →

Принцип логики

Для выполнения схем, использующих такой принцип, необходимы цифровые реле. Между собой реле соединяются линией «витая пара», кабелем ВОЛС или через телефонную линию (с использованием модема). С помощью таких линий приём (передача) информации осуществляется на диспетчерский пульт с разных объектов и между самими реле.


Принцип логики в радиальной сети

На приведённой Картинке 9, пояснён принцип работы логики. В каждом из 4-х цифровых реле применяется уставка по току, равная самой последней чувствительной ступени. Такая ступень имеет время срабатывания 0,2 с. Логическая селективность подразумевает возможность блокировки реле сигналом ЛО (логического ожидания). Такой сигнал подаётся по каналу от предыдущего реле защиты. Каждое из реле может передавать такие сигналы транзитом.

Как видно из рисунка, при КЗ в точке К1 все остальные реле, от сигнала ЛО, поданного реле К1, подвергнутся ожиданию. Реле К1 сработает и выполнит отключение. При КЗ в точке 2 аналогичным образом сработает реле К4.

Такие схемы построения логического управления требовательны к надёжности линий связи между элементами.

Характеристики срабатывания защитных автоматических выключателей

Класс АВ, определяющийся этим параметром, обозначается латинским литером и проставляется на корпусной части автомата перед цифрой, соответствующей номинальному току.

В соответствии с классификацией, установленной ПУЭ, защитные автоматы подразделяются на несколько категорий.

Автоматы типа МА

Отличительная черта таких устройств – отсутствие в них теплового расцепителя. Аппараты этого класса устанавливают в цепях подключения электрических моторов и других мощных агрегатов.

Приборы класса А

Автоматы типа А, как было сказано, обладают самой высокой чувствительностью. Тепловой расцепитель в устройствах с времятоковой характеристикой А чаще всего срабатывает при превышении силой тока номинала АВ на 30%.

Катушка электромагнитного расцепления обесточивает сеть в течение примерно 0,05 сек, если электроток в цепи превышает номинальный на 100%. Если по какой-либо причине после увеличения силы потока электронов в два раза электромагнитный соленоид не сработал, биметаллический расцепитель отключает питание в течение 20 – 30 сек.

Автоматы, имеющие времятоковую характеристику А, включаются в линии, при работе которых недопустимы даже кратковременные перегрузки. К таковым относятся цепи с включенными в них полупроводниковыми элементами.

Защитные устройства класса B

Аппараты категории B обладают меньшей чувствительностью, чем относящиеся к типу A. Электромагнитный расцепитель в них срабатывает при превышении номинального тока на 200%, а время на срабатывание составляет 0,015 сек. Срабатывание биметаллической пластины в размыкателе с характеристикой B при аналогичном превышении номинала АВ занимает 4-5 сек.

Оборудование этого типа предназначено для установки в линиях, в которые включены розетки, приборы освещения и в других цепях, где пусковое повышение электротока отсутствует либо имеет минимальное значение.

Автоматы категории C

Устройства типа C наиболее распространены в бытовых сетях. Их перегрузочная способность еще выше, чем у ранее описанных. Для того, чтобы произошло срабатывание соленоида электромагнитного расцепления, установленного в таком приборе, нужно, чтобы проходящий через него поток электронов превысил номинальную величину в 5 раз. Срабатывание теплового расцепителя при пятикратном превышении номинала аппарата защиты происходит через 1,5 сек.

Установка автоматических выключателей с времятоковой характеристикой C, как мы и говорили, обычно производится в бытовых сетях. Они отлично справляются с ролью вводных устройств для защиты общей сети, в то время как для отдельных веток, к которым подключены группы розеток и осветительные приборы, хорошо подходят аппараты категории B.

Автоматические выключатели категории Д

Эти устройства имеют наиболее высокую перегрузочную способность. Для срабатывания электромагнитной катушки, установленной в аппарате такого типа, нужно, чтобы номинал по электротоку защитного автомата был превышен как минимум в 10 раз.

Срабатывание теплового расцепителя в этом случае происходит через 0,4 сек.

Устройства с характеристикой D наиболее часто используются в общих сетях зданий и сооружений, где они играют подстраховочную роль. Их срабатывание происходит в том случае, если не произошло своевременного отключения электроэнергии автоматами защиты цепи в отдельных помещениях. Также их устанавливают в цепях с большой величиной пусковых токов, к которым подключены, например, электромоторы.

Защитные устройства категории K и Z

Автоматы этих типов распространены гораздо меньше, чем те, о которых было рассказано выше. Приборы типа K имеют большой разброс в величинах тока, необходимых для электромагнитного расцепления. Так, для цепи переменного тока этот показатель должен превышать номинальный в 12 раз, а для постоянного – в 18. Срабатывание электромагнитного соленоида происходит не более чем через 0,02 сек. Срабатывание теплового расцепителя в таком оборудовании может произойти при превышении величины номинального тока всего на 5%.

Этими особенностями обусловлено применение устройств типа K в цепях с исключительно индуктивной нагрузкой.

Приборы типа Z тоже имеют разные токи срабатывания соленоида электромагнитного расцепления, но разброс при этом не столь велик, как в АВ категории K. В цепях переменного тока для их отключения превышение токового номинала должно быть трехкратным, а в сетях постоянного – величина электротока должна быть в 4,5 раза больше номинальной.

Аппараты с характеристикой Z используются только в линиях, к которым подключены электронные устройства.

Наглядно про категории автоматов на видео:

Карта селективности и правила ее создания

Схема утверждённого образца, на которой нанесены все токовые параметры защитных аппаратов и устройств, с указанием общего источника питания, выполняется в удобном для просмотра масштабе. Это карта селективности. Она обеспечивает максимальное применение защитных качеств автоматических выключателей. Все процессы, возможные при эксплуатации, отображены на ней графически.

На карту в обязательном порядке наносятся:

  • места важных расчётных точек;
  • защитные характеристики автоматов и возможных КЗ, при этом указаны их min и max значения.

Данная карта служит основанием для составления таблицы по выбору защитных аппаратов. Кроме того, карта позволяет оценивать общую защитную селективность и даёт полную информацию о согласованных между собой уставках всех автоматов.

Построение карты выполнено по осям. Ось абсцисс представляет токовые значения, на ось ординат наносятся временные значения.

К сведению. На ось могут наноситься и другие разновидности характеристик. Каждая схема включает в себя параметры двух-трёх автоматов. Построение таких карт можно выполнить при помощи компьютерной программы.

Советуем изучить — Микропроцессорные терминалы защит и автоматики ABB


Пример карты селективности, выполненной при помощи программы

Грамотно выполненная селективная защита позволяет сохранить оборудование. При отключении конкретного участка она допускает выполнить обратное включение питания автоматическим включением резерва (АВР) и свести к минимуму простой оборудования и перерывы в подаче электроэнергии потребителям.

Основные задачи селективной защиты

Селективность – это процесс, означающий выбор (отбор). Этот термин применим к разным отраслям и направлениям деятельности человека. Например, в химии, при протекании химических реакций, ведут речь об индексе селективности. При этом рассматривают избирательность химических превращений.

Что касается человека, то его восприятие окружающего мира, выбор информации, а также её запоминание носят избирательный характер.

Что же такое селективность в электрике, и для чего она нужна?

К задачам электрической селективной защиты относятся:

  • гарантия безопасности оборудования и обслуживающего персонала;
  • моментальное установление места повреждения и отключение только неисправного участка;
  • уменьшение отрицательных результатов влияния аварии на другие узлы и части электроприборов;
  • минимизация повреждений на неисправном участке;
  • гарантирование максимальной беспрерывности работы электросистемы;
  • достижение простоты эксплуатирования электрического оборудования.

К тому же селективность снижает последствия коротких замыканий и нагрузку на устройство.

Требования к аппаратам защиты

3.1.3. Аппараты защиты по своей отключающей способности должны соответствовать максимальному значению тока КЗ в начале защищаемого участка электрической сети (см. также гл. 1.4).

Допускается установка аппаратов защиты, нестойких к максимальным значениям тока КЗ, а также выбранных по значению одноразовой предельной коммутационной способности, если защищающий их групповой аппарат или ближайший аппарат, расположенный по направлению к источнику питания, обеспечивает мгновенное отключение тока КЗ, для чего необходимо, чтобы ток уставки мгновенно действующего расцепителя (отсечки) указанных аппаратов был меньше тока одноразовой коммутационной способности каждого из группы нестойких аппаратов, и если такое неселективное отключение всей группы аппаратов не грозит аварией, порчей дорогостоящего оборудования и материалов или расстройством сложного технологического процесса.

3.1.4. Номинальные токи плавких вставок предохранителей и токи уставок автоматических выключателей, служащих для защиты отдельных участков сети, во всех случаях следует выбирать по возможности наименьшими по расчетным токам этих участков или по номинальным токам электроприемников, но таким образом, чтобы аппараты защиты не отключали электроустановки при кратковременных перегрузках (пусковые токи, пики технологических нагрузок, токи при самозапуске и т. п.).

3.1.5. В качестве аппаратов защиты должны применяться автоматические выключатели или предохранители. Для обеспечения требований быстродействия, чувствительности или селективности допускается при необходимости применение устройств защиты с использованием выносных реле (реле косвенного действия).

3.1.6. Автоматические выключатели и предохранители пробочного типа должны присоединяться к сети так, чтобы при вывинченной пробке предохранителя (автоматического выключателя) винтовая гильза предохранителя (автоматического выключателя) оставалась без напряжения. При одностороннем питании присоединение питающего проводника (кабеля или провода) к аппарату защиты должно выполняться, как правило, к неподвижным контактам.

3.1.7. Каждый аппарат защиты должен иметь надпись, указывающую значения номинального тока аппарата, уставки расцепителя и номинального тока плавкой вставки, требующиеся для защищаемой им сети. Надписи рекомендуется наносить на аппарате или схеме, расположенной вблизи места установки аппаратов защиты.

Нагрузка

В данном контексте под понятием нагрузка подразумеваются все электроприборы, которые применяются в доме или квартире и потребляют электроэнергию. Наверняка всем известно, что такое КПД – коэффициент полезного действия. Этот параметр определяет сколько электроэнергии затрачивается на полезное действие, а сколько на побочный эффект. Например, взять лампу накаливания, ее главная задача светить, но при этом она еще нагревается. Приблизительно 40% затраченной энергии тратится на нагрев и лишь 60% на свет. Отсюда КПД = 0,6. Здесь все просто, но вот существует еще и коэффициент мощности или как говорят косинус фи. Что же это такое?

Расчет селективности автоматов

При рассмотрении вопроса, что такое селективность, необходимо иметь понятие, как её рассчитывают. Расчёты сводятся к правильному подбору защитного устройства, в частности, автомата.

Селективность для автоматов, расположенных поблизости к источнику питания, должна удовлетворять условию:

Iс.о.послед. ≥ Kн.о.* Iк. предыд.,

здесь:

  • Iс.о.послед. – значение тока, вызывающего срабатывание защиты;
  • Kн.о. – коэффициент надёжности отключения;
  • I к. предыд. – ток КЗ в конце участка защиты.

В случае временной зависимости для расчётов избирательности используют такую формулу:

Tс.о.послед ≥ Tк.пред.+ ∆T,

где:

  • Tс.о.послед и Tк.пред. – интервалы времени, через которые действуют отсечки выключателей;
  • ∆T – временная точка избирательности.

Подбор автоматических выключателей при расчётах производят по таблицам.


Таблица избирательности автоматов

Пуэ селективность автоматических выключателей

» Разное » Пуэ селективность автоматических выключателей

instrument.guru > Электричество > Принцип работы селективности автоматических выключателей

Селективность в области электрики является одним из основополагающих понятий. Она представляет собой защиту электрических устройств от поломок или каких-либо отклонений в работе. С помощью данной функции автоматы работают дольше, повышается уровень безопасности.

  • Что такое селективность в области электрики?
  • Типы селективности электрических приборов
  • Таблица селективности
  • Расчёт селективности
  • Карта селективности
  • Селективность автоматов ПУЭ
  • Принцип селективности для выбора выключателей

Что такое селективность в области электрики?

Селективность или избирательность – особенность релейной защиты, которая определяется умением находить неисправный элемент всей электрической системы и выключать именно его. Защита может быть двух видов: абсолютная и относительная, в зависимости от отключения участков. В первом случае более точно срабатывают предохранители на том участке, где произошло замыкание или поломка. Второй тип селективности заставляет отключаться автоматы, которые находятся выше, если защита других не вступила в действие по каким-либо причинам.

Типы селективности электрических приборов

Классификацию защиты электрических устройств можно представить в различии схем подключения:

  • Полная. Если несколько приборов подключены последовательно, то на неисправность быстрее реагирует тот, что находится ближе к зоне аварии.
  • Частичная. Принцип действия селективности автоматов аналогичен с полной, но существует ограничение величины тока.
  • Временная. Такого рода избирательность предполагает разное время выдержки автоматов с одинаковыми характеристиками на срабатывание в случае поломки. Эта защита предназначена для того, чтобы подстраховать автоматы по скорости выключения. Например: первый начинает действовать спустя 0,2 сек, второй – 0,4 сек и т. д.
  • Токовая. Принцип работы селективности тот же, что и у временной, но в этом случае параметром выступает максимальная токовая отметка. Выставляются определённые значения в порядке убывания от источника питания до объекта нагрузки. Например, при вводе 28 А., к розеткам 18 А и 12 – к свету.
  • Времятоковая. Одна из самых сложных систем по защите от неисправностей. Аппараты подразделяются на четыре различные группы: A, B, C и D, каждая из которых реагирует на ток. В этом случае сложно составить схему защиты автоматических выключателей при коротком замыкании. Наиболее эффективна защита будет при первой группе А. Её используют в основном для электронных цепей. Наибольшую популярность и распространённость получили аппараты типа С, однако следует серьёзно отнестись к их установке.
  • Зонная. Этот способ защиты используется чаще всего в промышленности, так как он является дорогостоящим и довольно сложным. За работой электрической сети следят специальные приборы. При достижении установленного значения все данные передаются в центр контроля, где выбирается аппарат для выключения. Селективность этого вида предполагает наличие специальных электронных расцепителей. Они действуют следующим образом: при обнаружении какого-либо нарушения аппарат, расположенный ниже, подаёт сигнал другому автомату, который находится выше. Если в течение 1 секунды не сработает первое устройство, включится второе.
  • Энергетическая. Здесь автоматы действуют очень быстро, благодаря чему ток короткого замыкания не успевает достичь максимального значения.

Таблица селективности

Защита автоматических выключателей исправно работает обычно при маленьких перегрузках. При коротком замыкании сформировать селективность намного тяжелей. Для таких целей существует таблица селективности, которая позволяет генерировать связки с избирательностью вступления в действие. Один расчёт предназначен для одного вида аппарата. Ниже представлен пример такой таблицы, который также можно найти на интернет-сайтах производителей автоматов.

Расчёт селективности

Чаще всего защитными устройствами выступают обыкновенные автоматические выключатели. Их селективность обеспечивается с помощью верного выбора и настроек параметров. Принцип работы таких выключателей обусловлен выполнением следующего условия:

  • Iс.о.послед ≥ Kн.о.* I к.пред., где: — Iс.о.послед — ток, при котором вступает в действие защита;
  • — I к.пред. — ток короткого замыкания в конце зоны действия защиты;
  • — Kн.о. — коэффициент надёжности, зависящий от параметров.

Полная селективность между модульными автоматическими выключателями

Как правило, специалисты решают задачу согласования рабочих характеристик модульных автоматических выключателей со стороны питания и нагрузки, используя токовый метод. Он основан на выборе аппаратов защиты с разными уставками по току, причём более высокие значения должно иметь оборудование на стороне питания. Для подбора автоматических выключателей используются таблицы селективности и специальное программное обеспечение. Но даже такая тщательная проработка схемы позволяет добиться лишь частичной координации рабочих характеристик модульных автоматических выключателей. Полная селективность обеспечивается только в распределительных боксах, где расчётные токи к.з. небольшие, что на самом деле редкость. Как правило, даже в квартирных щитах достигается лишь частичная селективность. Рассмотрим такой пример – в электрическом шкафу установлены автоматические выключатели с характеристикой С. Номинальный ток вводного аппарата – 32А, устройства на отходящей линии – 16А. Нижняя граница зоны срабатывания вводного автомата 5In=5·32=160А. Она же является и верхней границей срабатывания для нижестоящего автомата. 1 Очевидно, что в данном случае полная селективность не обеспечивается.

Часто задача согласованной работы автоматических выключателей со стороны нагрузки и питания во всём диапазоне сверхтоков остаётся нерешённой, что приводит к авариям. «Не так давно в одном крупном банке из-за чайника, случайно включённого в розетку «чистых» сетей 1 , и отсутствия полной селективности в распределительных шкафах были обесточены все компьютеры на этаже, что привело к потере полугодового отчёта», — рассказывает Алексей Азаров, начальник отдела электрических сетей и систем компании «ЭкоПрог».

До недавнего времени полную селективность можно было реализовать, установив в качестве вводного устройства в распределительном щите вместо модульного автоматического выключателя аппарат в литом корпусе. Для указанного оборудования возможны такие способы координации рабочих характеристик, как временной, энергетический и зонный 2 . Но данное решение не всегда целесообразно, так как оно приводит к таким последствиям, как:

  • удорожание проекта;
  • увеличение занимаемых распределительными шкафами площадей – аппараты в литом корпусе и воздушные автоматические выключатели по своим габаритам значительно превосходят модульное оборудование;
  • сложности в установке и эксплуатации (аппараты в литом корпусе оснащаются электронными расцепителями, которые нуждаются в настройке).

«Заменить модульные автоматические выключатели на аппараты защиты другого типа для инженера означает пожертвовать компактностью и единообразием технических решений, а это не всегда возможно, — утверждает Павел Томашёв, инженер по группе изделий компании АББ, лидера в производстве силового оборудования и технологий для электроэнергетики и автоматизации. — Специально для того, чтобы решить проблему обеспечения полной координации между модульными аппаратами защиты, наша компания разработала новый селективный автоматический выключатель серии S750DR. Данное устройство – новинка для нашей страны. Оно представляет решение для достижения согласованности рабочих характеристик, при котором невозможно одновременное отключение вышестоящего и нижестоящего аппаратов. В данном модульном автоматическом выключателе реализован дополнительный токовый путь, благодаря которому обеспечивается задержка срабатывания по времени. Линейка автоматических выключателей S750DR включает в себя аппараты от 0,5 до 63А».

Селективный модульный автоматический выключатель обеспечивает координацию рабочих характеристик аппаратов защиты независимо от напряжения сети. Такой аппарат защиты не требует дополнительного питания для замыкания/размыкания контактов и для выполнения защитной функции, поскольку устройство является электромеханическим.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Электрика
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: