Катушка индуктивности: описание, характеристики, формула расчета

Катушка индуктивности в цепи переменного тока

Для того, чтобы узнать, как ведет себя катушка индуктивности в цепи переменного тока, нам понадобится осциллограф, генератор частоты, собственно сама катушка индуктивности и резистор на 100 Ом. Чем больше сопротивление, тем меньше будет проседать напряжение с моего генератора частоты, поэтому я взял резистор на 100 Ом.Он у меня будет в качестве шунта. Падение напряжения на этом резисторе будет зависеть от тока, протекающего через него

Собираем все это дело по такой схеме:

Получилось как то так:

Сразу договоримся, что у нас первый канал будет красным цветом, а второй канал – желтым. Следовательно, красная синусоида – это частота, которую нам выдает генератор частоты, а желтая синусоида – это сигнал, который снимается с резистора.

Мы с вами узнали, что при нулевой частоте (постоянный ток), катушка почти беспрепятственно пропускает через себя электрический ток. В нашем опыте мы будем подавать с генератора частоты синусоидальный сигнал с разной частотой и смотреть, меняется ли напряжение на резисторе.

Опыт N1

Для начала подаем сигнал с частотой в 1 Килогерц.

Давайте разберемся, что есть что. В зеленой рамочке я вывел автоматические замеры, которые делает осциллограф

Красный кружок с цифрой “1” – это замеры “красного”канала. Как мы видим, F (частота) =1 Килогерц, а Ма (амплитуда) = 1,96 Вольт. Ну грубо скажем 2 Вольта. Смотрим на кружочек с цифрой “2”. F=1 Килогерц, а Ма=1,96 Вольт. То есть можно сказать, что сигнал на выходе точно такой же, как и на входе.

Увеличиваем частоту до 10 Килогерц

Амплитуда не уменьшилась. Сигнал какой есть, такой и остался.

Увеличиваем до 100 Килогерц

Заметили разницу? Амплитуда желтого сигнала стала меньше, да еще и график желтого сигнала сдвигается вправо, то есть запаздывает, или научным языком, появляется сдвиг фаз. Красный сигнал никуда не сдвигается, запаздывает именно желтый. Это имейте ввиду.

Сдвиг фаз – это разность между начальными фазами двух измеряемых величин. В данном случае напряжения. Для того, чтобы произвести замер сдвига фаз, должно быть условие, что у этих сигналов одна и та же частота. Амплитуда может быть любой. Ниже на рисунке приведен этот самый сдвиг фаз или, как еще его называют, разность фаз:

Увеличиваем частоту до 200 Килогерц

На частоте 200 Килогерц амплитуда упала вдвое, да и разность фаз стала больше.

Увеличиваем частоту до 300 Килогерц.

Амплитуда желтого сигнала упала уже до 720 милливольт. Разность фаз стала еще больше.

Увеличиваем частоту до 500 Килогерц

Амплитуда уменьшилась до 480 милливольт.

Добавляем еще частоту до 1 Мегагерц

Амплитуда желтого канала стала 280 милливольт.

Ну и добавляем частоту до предела, который позволяет выдать генератор частоты: 2 Мегагерца

Амплитуда “желтого” сигнала стала настолько маленькой, что мне пришлось ее даже увеличить в 5 раз.

И можно сказать, что сдвиг фаз стал почти 90 градусов или π/2.

Но станет ли сдвиг фаз больше, чем 90 градусов, если подать очень-очень большую частоту? Эксперименты говорят, что нет. Если сказать просто, то при бесконечной частоте сдвиг фаз будет равняться 90 градусов. Если совместить наши графики на бесконечной частоте, то можно увидеть примерно вот такой рисунок:

Так какой вывод можно сделать?

С увеличением частоты сопротивление катушки растет, а также увеличивается сдвиг фаз. И чем больше частота, тем больше будет сдвиг фазы, но не более, чем 90 градусов.

Опыт N2

Давайте же уменьшим индуктивность катушки. Прогоним еще раз по тем же самым частотам. Я убрал половину витков и сделал витки на край феррита, тем самым уменьшил индуктивность до 33 микрогенри.

Итак, прогоняем все по тем же значениям частоты

Факторы, влияющие на индуктивность катушки на разомкнутом сердечнике

В сердечниках с малым воздушным зазором магнитное поле практически всё сосредоточенно в сердечнике, и в воздушном зазоре рассеивание магнитного поля незначительно. Другая картина возникает, если магнитное поле возникает в сердечнике, имеющем воздушный зазор lз сопоставимый с длиной магнитной силовой линии в сердечнике lc.


Магнитное поле в разомкнутом сердечнике.

Таким образом, магнитные сопротивления сердечника и воздушного зазора становятся соизмеримыми, что приводит к усложнению расчётных выражений для индуктивности катушек на таких сердечниках. В этом случае расчёт параметров ведут с учётом того, что в разомкнутых сердечниках на торцах сосредотачиваются противоположно ориентированные магнитные частицы, то есть частицы с положительным доменом смещаются в направлении внешнего поля, а отрицательные навстречу ему. В результате возникает размагничивающее поле, противоположное основному. Данное поле характеризуется размагничивающим фактором N или коэффициентом размагничивания. Данный фактор зависит от формы и размеров самого сердечника. Влияние размагничивающего фактора на магнитное поле сердечника описывается следующим выражением

где Н – напряженность магнитного поля в сердечнике,

Н – напряженность внешнего магнитного поля, то есть поля создаваемого катушкой, намотанной на разомкнутый сердечник,

НР – размагничивающее поле сердечника,

N – размагничивающий фактор,

J – вектор намагничивания сердечника.

Точное значение размагничивающего фактора, возможно, рассчитать только для однородно намагниченных тел, например, эллипсоидов вращения, шаров, дисков. Для учёта размагничивающего фактора на магнитные свойства сердечника ввели понятие эффективной магнитной проницаемости сердечника μе, которая зависит от магнитной проницаемости вещества сердечника μr и размагничивающим фактором N. Значение эффективной магнитной проницаемости сердечника для однородно намагниченных тел определяется следующим выражением

Однако в практике, используются неоднородно намагниченные тела – цилиндры, призмы, поэтому для расчёта эффективной магнитной проницаемости таких сердечников применяются эмпирически выведенные выражения.

Вследствие того, что значение размагничивающего фактора в неоднородно намагничиваемых телах различно по длине, то необходимо учитывать и расположение катушки индуктивности относительно сердечника и длину данной катушки относительно длины сердечника.

Таким образом, индуктивность катушки, выполненной на разомкнутом сердечнике можно определить по следующему выражению

где L – индуктивность катушки без сердечника, расчет смотреть (Часть 1, Часть 2, Часть 3),

μе – эквивалентная магнитная проницаемость разомкнутого сердечника,

k– коэффициент зависящий от отношения длины катушки к длине сердечника,

pl – коэффициент зависящий от расположения катушки относительно середины длины сердечника.

Рассмотри более подробно зависимость индуктивности от различных факторов.

Обозначение катушек с отводами и начала обмотки

В радио и электротехнической аппаратуре, например, в приемниках или импульсных преобразователях напряжения, иногда используют не всю индуктивность катушки, а только некоторую ее часть. Для таких случаев катушки изготавливают с отводом или отводами.

При разработке некоторых конструкций иногда необходимо строго соблюсти начало и конец обмотки катушки или трансформатора. Чтобы указать, какой из концов обмотки является началом, а какой – концом, у вывода начала обмотки ставят жирную точку.

Для подстройки катушек на частотах свыше 15…20 МГц часто применяют магнитопроводы из немагнитных материалов (меди, алюминия и т.п.). Возникающие в таком магнитопроводе под действием магнитного поля катушки вихревые токи создают свое поле, противодействующее основному, в результате чего индуктивность катушки уменьшается.

Немагнитный магнитопровод-подстроечник обозначают так же, как и ферритовый, но рядом указывают химический символ металла, из которого он изготовлен. На рисунке изображен подстроечник, изготовленный из меди.

Вот и все, что хотел рассказать о катушках индуктивности. Удачи!

Литература: 1. В. А. Волгов «Детали и узлы радиоэлектронной аппаратуры». 2. В. В. Фролов «Язык радиосхем». 3. М. А. Сгут «Условные обозначения и радиосхемы».

Катушка индуктивности в цепи постоянного тока.

Итак, в первую очередь, давайте разберемся, что же происходит в самой катушке при протекании тока. Если ток не изменяет своей величины, то катушка не оказывает на него никакого влияния. Значит ли это, что в случае постоянного тока использование катушек индуктивности и рассматривать не стоит? А вот и нет Ведь постоянный ток можно включать/выключать, и как раз в моменты переключения и происходит все самое интересное. Давайте рассмотрим цепь:

Резистор выполняет в данном случае роль нагрузки, на его месте могла бы быть, к примеру, лампа. Помимо резистора и индуктивности в цепь включены источник постоянного тока и переключатель, с помощью которого мы будем замыкать и размыкать цепь.

Что же произойдет в тот момент когда мы замкнем выключатель?

Ток через катушку начнет изменяться, поскольку в предыдущий момент времени он был равен 0. Изменение тока приведет к изменению магнитного потока внутри катушки, что, в свою очередь, вызовет возникновение ЭДС (электродвижущей силы) самоиндукции, которую можно выразить следующим образом:

Возникновение ЭДС приведет к появлению индукционного тока в катушке, который будет протекать в направлении, противоположном направлению тока источника питания. Таким образом, ЭДС самоиндукции будет препятствовать протеканию тока через катушку (индукционный ток будет компенсировать ток цепи из-за того, что их направления противоположны). А это значит, что в начальный момент времени (непосредственно после замыкания выключателя) ток через катушку будет равен 0. В этот момент времени ЭДС самоиндукции максимальна. А что же произойдет дальше? Поскольку величина ЭДС прямо пропорциональна скорости изменения тока, то она будет постепенно ослабевать, а ток, соответственно, наоборот  будет возрастать. Давайте посмотрим на графики, иллюстрирующие то, что мы обсудили:

На первом графике мы видим входное напряжение цепи – изначально цепь разомкнута, а при замыкании переключателя появляется постоянное значение. На втором графике мы видим изменение величины тока через катушку индуктивности. Непосредственно после замыкания ключа ток отсутствует из-за возникновения ЭДС самоиндукции, а затем начинает плавно возрастать. Напряжения на катушке наоборот в начальный момент времени максимально, а затем уменьшается. График напряжения на нагрузке будет по форме (но не по величине) совпадать с графиком тока через катушку (поскольку при последовательном соединении ток, протекающий через разные элементы цепи одинаковый). Таким образом, если в качестве нагрузки мы будем использовать лампу, то они загорится не сразу после замыкания переключателя, а с небольшой задержкой (в соответствии с графиком тока).

Аналогичный переходный процесс в цепи будет наблюдаться и при размыкании ключа. В катушке индуктивности возникнет ЭДС самоиндукции, но индукционный ток в случае размыкания будет направлен в том же самом направлении, что и ток в цепи, а не в противоположном, поэтому запасенная энергия катушки индуктивности пойдет на поддержание тока в цепи:

После размыкания ключа возникает ЭДС самоиндукции, которая препятствует уменьшению тока через катушку, поэтому ток достигает нулевого значения не сразу, а по истечении некоторого времени. Напряжение же в катушке по форме идентично случаю замыкания переключателя, но противоположно по знаку. Это связано с тем, что изменение тока, а соответственно и ЭДС самоиндукции в первом и втором случаях противоположны по знаку (в первом случае ток возрастает, а во втором убывает).

Кстати, я упомянул, что величина ЭДС самоиндукции прямо пропорциональна скорости изменения силы тока, так вот, коэффициентом пропорциональности является ни что иное как индуктивность катушки:

На этом мы заканчиваем с катушками индуктивности в цепях постоянного тока и переходим к цепям переменного тока.

ОБЩАЯ ЭЛЕКТРОТЕХНИКА И ЭЛЕКТРОНИКА. ЭЛЕКТРИЧЕСТВО И МАГНЕТИЗМ

  1. Накопленная энергия в индуктивности
  2. Гидравлическая модель
  3. Индуктивность в электрических цепях
  4. Схемы соединения катушек индуктивностей
  5. Параллельное соединение индуктивностей
  6. Последовательное соединение индуктивностей
  7. Добротность катушки индуктивности
  8. Катушка индуктивности. Формула индуктивности
  9. Базовая формула индуктивности катушки
  10. Индуктивность прямого проводника
  11. Индуктивность катушки с воздушным сердечником
  12. Индуктивность многослойной катушки с воздушным сердечником
  13. Индуктивность плоской катушки
  14. Конструкция катушки индуктивности
  15. Применение катушек индуктивности
  16. Расчет катушек индуктивности
  17. Метод определения собственной ем­кости катушек
  18. Расчет и изготовление плоских катушек индуктивности
  19. Расчет однослойной катушки

Катушка индуктивности

— является пассивным компонентом электронных схем, основное предназначение которой является сохранение энергии в виде магнитного поля. Свойство катушки индуктивности чем-то схоже с конденсатором, который хранит энергию в виде электрического поля.

Индуктивность (измеряется в Генри) — это эффект возникновения магнитного поля вокруг проводника с током. Ток, протекающий через катушку индуктивности, создает магнитное поле, которое имеет связь с электродвижущей силой (ЭДС) оказывающее противодействие приложенному напряжению.

Возникающая противодействующая сила (ЭДС) противостоит изменению переменного напряжения и силе тока в катушке индуктивности. Это свойство индуктивной катушки называется индуктивным сопротивлением. Следует отметить, что индуктивное сопротивление находится в противофазе к емкостному реактивному сопротивлению конденсатора в цепи переменного тока. Путем увеличения числа витков можно повысить индуктивность самой катушки.

Расчет катушек индуктивности под конкретный провод

Пересчет катушек индуктивности производится при отсутствии провода нужного диаметра, указанного в описании конструкции, и замене его проводом другого диаметра, а также при изменении диаметра каркаса катушки.Если отсутствует провод нужного диаметра, можно воспользоваться другим. Изменение диаметра в пределах до 25% в ту или другую сторону вполне допустимо и, как правило, не отражается на качестве работы. Более того, увеличение диаметра провода допустимо во всех случаях, так как при этом уменьшается омическое сопротивление катушки и повышается ее добротность. Уменьшение же диаметра ухудшает добротность и увеличивает плотность тока на единицу сечения провода, которая не может быть больше допустимой величины.Пересчет количества витков однослойной цилиндрической катушки при замене провода одного диаметра другим производится по формуле

где n — новое количество витков катушки; n1 — число витков катушки, указанное в описании; d — диаметр имеющегося провода; d1 — диаметр провода, указанного в описании. В качестве примера приведем пересчет числа витков катушки, изображенной на рис.1, для провода диаметром 0,8 мм

(длина намотки l = 18×0,8 — 14,4 мм).Таким образом, количество витков и длина намотки несколько уменьшились. Для проверки правильности пересчета рекомендуется выполнить новый расчет катушки с измененным диаметром провода:

При пересчете катушки, связанном с изменением ее диаметра, следует пользоваться процентной зависимостью между диаметром и числом витков. Эта зависимость заключается в следующем: при увеличении диаметра катушки на определенное число процентов количество витков уменьшается на столько же процентов, и, наоборот, при уменьшении диаметра на равное число процентов увеличивается количество витков. Для упрощения расчетов за диаметр катушки можно принимать диаметр каркаса. В качестве примера произведем пересчет числа витков катушки, имеющей 40 витков при длине намотки 2 см и диаметр каркаса 1,5 см, на диаметр, равный 1,8 см. Согласно условиям пересчета диаметр каркаса увеличивается на 3 мм, или на 20%. Следовательно, для сохранения неизменной величины индуктивности этой катушки при намотке на каркас большого диаметра нужно уменьшить число витков на 20%, или на 8 витков. Новая катушка будет иметь 32 витка. Длина намотки также уменьшится на 20%, или до 1,6 см.Проверим пересчет и определим допущенную погрешность. Исходная катушка имеет индуктивность:

Индуктивность новой катушки на каркасе с увеличенным диаметром:

Ошибка при пересчете составляет 0,32 мкГн, то есть меньше 2,5%, что вполне допустимо для расчетов в радиолюбительской практике.

Каждый любитель мастерить электронные приборы и , не раз сталкивался с необходимостью намотать катушку индуктивности или дроссель. В схемах конечно указывают число намотки катушки и каким проводом, но что делать если указанного диаметра провода нет в наличии, а есть намного толще или тоньше??

Я расскажу вам как это сделать на моем примере.Хотел я сделать вот эту схему . Намоточные данные катушек в схеме указаны (6 витков провода 0.4 на каркасе 2мм) эти намоточные данные соответствуют 47nH-нано Генри, все бы нормально но провод у меня был 0.6мм. Помощь я нашел в программе Coil32.

Открываем программу

Для этого вставляем в окошки известные нам данные этих катушек, длину намотки подбираем до тех пор пока вычисления не совпадут с нашими данными.

Но если вы например уже вытравили платы, а размер контактов для катушки остался прежним, то есть для катушки с длиной намотки 3мм, а у вас же получилась на 5.5мм (намного больше и впаять рядом 3 таких катушки будет проблематично)

Значит нужно нашу катушку уменьшить, ставим в окошко диаметр каркаса не 2мм, а 4мм. И наша катушка с проводом 0.6мм, уменьшается в длине с 5.5мм до 3мм и число витков 3.5, +/- 1-2 нГн роли большой не сыграет, зато мы сможем легко впаять наши индуктивности.

Для того, чтобы создать магнитное поле и сгладить в нем помехи и импульсы, используются специальные накопительные элементы. Катушки индуктивности в цепи переменного тока и постоянного применяются для накопления определенного количества энергии и ограничения электричества.

Взаимоиндуктивное сопротивление

Сопротивление в электрической цепи, обусловленное взаимоиндукцией, аналогично сопротивлению, обусловленному самоиндукцией, так как э. д. с. взаимоиндукции влияет на режим цепи с качественной стороны так же, как и э. д. с. самоиндукции.

Одноименные и разноименные зажимы индуктивно-связанных катушек
Ранее было дано определение согласного и встречного включения катушек.
При согласном включении магнитные потоки самоиндукции и взаимоиндукции в обеих катушках по направлению совпадают, поэтому э. д. с. самоиндукции и взаимоиндукции в каждой катушке также направлены одинаково.

При встречном включении магнитные потоки, а также э. д. с. самоиндукции и взаимоиндукции по направлению противоположны.

На схемах замещения взаимная индуктивность обозначается буквой М и дугой, объединяющей два индуктивно-связанных элемента (рис. 16.1). Для того чтобы различать согласное и встречное включения, на схемах обозначают также начала индуктивно-связанных катушек, отмечая их точками или звездочками.
 

Зажимы индуктивно-связанных катушек называют одноименными (начала или концы), если при согласном включении положительное направление токов, принятое на схеме, относительно этих зажимов одинаково (рис. 16.1, а). При встречном включении (рис. 16.1, б) ток в одной катушке направлен к началу, а в другой — к концу.
 

Разметка зажимов на основе опыта

Направление магнитных потоков катушек зависит от их взаимного расположения и направления намотки витков. При отсутствии сведений о расположении начал и концов можно провести простой опыт, для которого кроме самих индуктивно-связанных катушек требуется гальванический элемент (или аккумулятор) и гальванометр (рис. 16.2).

Рис. 16.2. Схема опыта для разметки зажимов катушек

Одну из катушек через ключ присоединяют к гальваническому элементу, к зажимам другой подключают гальванометр. В момент замыкания ключа К возникают токи в обеих катушках, причем ток i2 создает магнитный поток, направленный навстречу потоку первой катушки (правило Ленца). Поэтому при включении гальванического элемента токи i1 и i2 направлены противоположно относительно одноименных зажимов. Направление тока i1 известно, так как известна полярность источника питания, а направление тока i2 определяется по отклонению гальванометра.

Ток i2 направлен к положительному зажиму гальванометра, если стрелка его отклоняется по шкале (шкала односторонняя).

Одноименными зажимами катушек являются зажимы, к которым присоединены положительные зажимы источника и гальванометра; другие два зажима также одноименны.

Индуктивность

Индуктивность — это способность накапливать магнитное поле. Она характеризует способность проводника сопротивляться электрическому току. Проще всего это делать с помощью катушки, потому что катушка состоит из витков, которые представляют собой контуры. Вспомните про магнитный поток и обруч под дождем — в контуре создается магнитный поток. Где поток, там и электромагнитная индукция.

Индуктивность контура зависит от его формы и размеров, от магнитных свойств окружающей среды и не зависит от силы тока в контуре.

Как работает катушка

Вокруг каждого проводника, по которому протекает ток, образуется магнитное поле. Если поместить проводник в переменное поле — в нем возникнет ток.

Магнитные поля каждого витка катушки складываются. Поэтому вокруг катушки, по которой протекает ток, возникает сильное магнитное поле. При изменении силы тока в катушке будет изменяться и магнитный поток вокруг нее.

Задачка раз

На рисунке приведен график зависимости силы тока от времени в электрической цепи, индуктивность которой 1 мГн. Определите модуль ЭДС самоиндукции в интервале времени от 15 до 20 с. Ответ выразите в мкВ.

Решение

За время от 15 до 20 с сила тока изменилась от 20 до 0 мА. Модуль ЭДС самоиндукции равен:

Ответ: модуль ЭДС самоиндукции с 15 до 20 секунд равен 4 мкВ.

Задачка два

По проволочной катушке протекает постоянный электрический ток силой 2 А. При этом поток вектора магнитной индукции через контур, ограниченный витками катушки, равен 4 мВб. Электрический ток какой силы должен протекать по катушке для того, чтобы поток вектора магнитной индукции через указанный контур был равен 6 мВб?

Решение

При протекании тока через катушку индуктивности возникает магнитный поток, численно равный Ф = LI.

Отсюда индуктивность катушки равна:

Тогда для достижения значений потока вектора магнитной индукции в 6 мВб ток будет равен:

Ответ: для достижения значений потока вектора магнитной индукции в 6 мВб необходим ток в 3 А.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Электрика
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector