Расчет цепей постоянного тока методом правил кирхгофа

Составляем уравнения по второму закону Кирхгофа

Для составления системы уравнения по 2 правилу Кирхгофа необходимо выполнить следующие пункты.

  1. Количество уравнений по второму закону Киргофа равно количеству независимых контуров. По второму закону можно записать В-ВI-У+1 независимых уравнений. Где В — число ветвей в схеме. ВI— число ветвей в схеме с источником тока. У — число узлов в схеме.
  2. Находим независимые контура в электрической цепи (чтобы отличались хотя бы одной ветвью).
  3. Если в цепи присутствуют источники тока, то данные ветви не учитываем при нахождении независимых контуров.
  4. Задаемся произвольным направление обхода независимых контуров.
  5. Составляем уравнения по второму правилу Кирхгофа для каждого выбранного контура.
  6. Расставляем знаки на участках с нагрузкой. Если направление обхода контура совпадает с направлением протекающего тока, то падение напряжения на заданном участке берем со знаком «+». Если направление протекающего тока не совпадает с направлением обхода контура, то падение напряжения на данном участке берем со знаком «-«.
  7. Расставляем знаки на участках с источниками ЭДС. Если направление действия ЭДС (направление стрелочки) совпадает с направлением обхода независимого контура, то знак будет «плюс». Если не совпадает, то знак — «минус».

Задача 1

Дана схема, и известны сопротивления резисторов и ЭДС источников. Требуется найти токи в ветвях, используя законы Кирхгофа.

Используя первый закон Кирхгофа, можно записать n-1 уравнений для цепи. В нашем случае количество узлов n=2, а значит нужно составить только одно уравнение.

Напомним, что по первому закону, сумма токов сходящихся в узле равна нулю. При этом, условно принято считать входящие токи в узел положительными, а выходящими отрицательными. Значит для нашей задачи

Затем используя второй закон (сумма падений напряжения в независимом контуре равна сумме ЭДС в нем) составим уравнения для первого и второго контуров цепи. Направления обхода выбраны произвольными, при этом если направление тока через резистор совпадает с направлением обхода, берем со знаком плюс, и наоборот если не совпадает, то со знаком минус. Аналогично с источниками ЭДС.

На примере первого контура – ток I1 и I3 совпадают с направлением обхода контура (против часовой стрелки), ЭДС E1 также совпадает, поэтому берем их со знаком плюс.

Уравнения для первого и второго контуров по второму закону будут:

Все эти три уравнения образуют систему

Подставив известные значения и решив данную линейную систему уравнений, найдем токи в ветвях (способ решения может быть любым).

Проверку правильности решения можно осуществить разными способами, но самым надежным является проверка балансом мощностей.

Справедливость закона Кирхгофа о напряжениях независимо от топологии цепи

Тот факт, что эта цепь является параллельной, а не последовательной, не имеет ничего общего со справедливостью закона Кирхгофа о напряжениях. В этом отношении схема может быть «черным ящиком» (конфигурация ее компонентов полностью скрыта от нашего взгляда) с набором открытых клемм, между которыми мы можем измерить напряжение, – и правило напряжений Кирхгофа всё равно останется верным:

Рисунок 8 – Справедливость закона Кирхгофа напряжениях независимо от топологии схемы

Попробуйте на приведенной выше диаграмме выполнить обход в любом порядке, начиная с любого вывода, и вернувшись к исходному выводу, и вы обнаружите, что алгебраическая сумма напряжений всегда равна нулю.

Более того, «контур», который мы отслеживаем для второго закона Кирхгофа, даже не обязательно должен быть реальным путем протекания тока в прямом смысле этого слова. Всё, что нам нужно сделать, чтобы соответствовать правилу напряжений Кирхгофа, – это начинать и заканчивать в одной и той же точке цепи, подсчитывая падения напряжения и полярности при переходе между точками. Рассмотрим следующий абсурдный пример, проходя по «контуру» 2-3-6-3-2 в той же параллельной резисторной цепи:

Рисунок 9 – Параллельная схема из резисторов

\

Формулировка правил

Сразу необходимо внести ясность. Хотя во многих технических текстах используется слово закон, на самом деле это правило. В чем различие? Закон основывается на фундаментальных истинах, фактах, правило несет более абстрактное понимание. Чтобы это лучше понять рассмотрим основы этого метода.

Из-за сложности вычислений его лучше использовать там, где схема имеет узлы и контуры. Узлом называется место соединения более двух цепей. Это как если взять три и более обычных нитки и связать их вместе. Контуром называется замкнутая цепь, включающая в себя три и более таких узла.

Отдельная ветвь может содержать сколько угодно резисторов, под которыми подразумеваются нагрузки с активным сопротивлением. Все они объединяются в один общий резистор, так как это упрощает решение задачи. Также в цепи может быть один или несколько источников питания, которые также объединяются в один элемент, либо их может и не быть. Тогда цепь будет состоять только из сопротивления.

Контур всегда начинается и заканчивается одним и тем же узлом. Поскольку узлы обозначаются латинскими или русскими буквами, то в уравнении будет на одну букву больше, чем самих соединений. Например, участок состоит из узлов A, B, C, D. Тогда обозначение этой петли будет следующим: A, B, C, D, A. На самом деле, начинать отсчет можно с любой буквы петли, например, C, D, A, B, C, просто в первом варианте легче будет не запутаться.

Определения

Как уже было сказано ветвь – это отрезок электрической цепи, в которой направление движения заряда происходит в одну сторону. Сходящиеся в узле ветви имеют разное направление токов. Контур может состоять из нескольких внутренних контуров, ветви и узлы которых также относятся к этому контуру. Сам закон Кирхгофа по существу содержит два правила, относящиеся к узлу и контуру. Самым главным и сложным является составление уравнений, учитывающих все составляющие этой формулы.

Первый закон

Первое правило говорит о сохранении заряда. Согласно ему, в узле напряжение должно быть равно нулю. Это возможно только в том случае, если все входящие токи в эту точку заходят через одни ветви, а выходят через другие. Соотношение входящих и выходящих токов может быть разным, но суммарная составляющая положительных и отрицательных потенциалов всегда одинакова.

Предположим, в узел входят токи по трем ветвям, а выходят по двум. Суммарная величина входящих токов будет точно равняться суммарной величине выходящих. Если отобразить это математически, то сумма положительных векторов I1, I2 и I3 будет равняться сумме отрицательных векторов I4 и I5.

Второй закон

Это правило связано с сохранением энергии в контуре. Другими словами, энергия источников э. д. с, входящих в контур или рассматриваемый участок, равна падению напряжения на сопротивлениях этого участка. Если выбранный участок не имеет источников питания, то суммарное падение напряжения на всех нагрузках будет равно нулю. Прежде чем переходить к расчетам, следует ознакомиться еще с некоторыми моментами.

Составляем уравнения по первому закону Кирхгофа

Для составления уравнений по первому закону кирхгофа любой электрической цепи выполняем следующие действия.

  1. Количество уравнений по 1 закону киргофа равно количеству узлов минус один.
  2. Произвольно задаемся направлением токов в каждой ветви электрической цепи.
  3. Если в ветви присутствует источник тока, то считаем данный ток уже известным, равным величине источника тока.
  4. Составляем уравнения по первому правилу Кирхгофа для любых узлов кроме одного.
  5. Расставляем знаки. Токи, которые втекают в узел берем с одним знаком, например с плюсом. Токи, которые вытекают из узла берем с противоположным знаком, например с минусом.

Второй закон Кирхгофа.

Формулировка: Алгебраическая сумма ЭДС, действующих в замкнутом контуре, равна алгебраической сумме падений напряжения на всех резистивных элементах в этом контуре.

Здесь термин «алгебраическая сумма» означает, что как величина ЭДС так и величина падения напряжения на элементах может быть как со знаком «+» так и со знаком «-». При этом определить знак можно по следующему алгоритму:

1. Выбираем направление обхода контура (два варианта либо по часовой, либо против).

2. Произвольно выбираем направление токов через элементы цепи.

3. Расставляем знаки для ЭДС и напряжений, падающих на элементах по правилам:

— ЭДС, создающие ток в контуре, направление которого совпадает с направление обхода контура записываются со знаком «+», в противном случае ЭДС записываются со знаком «-».

— напряжения, падающие на элементах цепи записываются со знаком «+», если ток, протекающий через эти элементы совпадает по направлению с обходом контура, в противном случае напряжения записываются со знаком «-».

Например, рассмотрим цепь, представленную на рисунке 3, и запишем выражение согласно второму закону Кирхгофа, обходя контур по часовой стрелке, и выбрав направление токов через резисторы, как показано на рисунке.

Рисунок 3. Электрическая цепь, для пояснения второго закона Кирхгофа.

E1- Е2 = -UR1 — UR2 или E1 = Е2 — UR1 — UR2 (3)

Предлагаю посмотреть отдельный видеоурок по второму закону Кирхогфа (теория).

Алгебраическая сумма разностей потенциалов

Закон напряжения по Густаву Кирхгофу – второй закон этого автора, используемый для анализа электрической цепи. Второй закон Кирхгофа гласит, что для последовательной замкнутой цепи алгебраическая сумма всех напряжений в круге любой замкнутой цепи равна нулю. Претензия связана с тем, что петля петли представляет собой замкнутый токопроводящий путь, где потери энергии исключены. Другими словами, алгебраическая сумма разностей потенциалов замкнутого контура теоретически равна нулю:

V = 0

Примечание. Термин «алгебраическая сумма» означает учет полярностей и знаков источников ЭДС, а также падения напряжения в цепи. Эта концепция закона Кирхгофа, известного как «сохранение энергии», как движение по контуру или замкнутому контуру, подтверждает логику возврата к началу цепи и к исходному потенциалу без потери напряжения во всей цепи.

Итак, вывод следует: при применении второго закона Кирхгофа к определенному элементу электрической цепи важно обращать особое внимание на алгебраические признаки падений напряжения на элементах (источниках ЭДС), иначе расчеты обернутся ошибкой

Одиночный контурный элемент — резистор

В качестве простого примера с резистором предположим, что ток течет в том же направлении, что и поток положительного заряда. В этом случае ток протекает через резистор от точки A к точке B. Действительно, от положительной клеммы к отрицательной. Следовательно, поскольку движение положительного заряда отмечается в направлении, аналогичном направлению протекания тока, на резистивном элементе будет зафиксировано падение потенциала, что приведет к падению отрицательного потенциала на резисторе (- I * R).

Если ток, протекающий из точки B в точку A, течет в направлении, противоположном потоку положительного заряда, вы заметите увеличение потенциала через резистивный элемент, поскольку происходит переход от отрицательного потенциала к положительному потенциалу, что дает падение напряжения. (+ I * R). Следовательно, чтобы правильно применить закон Кирхгофа к электрической цепи, необходимо точно определить направление полярности. Очевидно, знак падения напряжения на резисторе зависит от направления тока, протекающего через резистор.

Направление протекания тока в замкнутом контуре можно определять по или против часовой стрелки, и любой вариант допустим на выбор. Если выбранное направление отличается от фактического направления тока, соблюдение закона Кирхгофа будет правильным и действительным, но приведет к результату, когда алгебраический расчет имеет знак минус. Чтобы лучше понять эту концепцию, логично рассмотреть еще один пример с петлевой петлей на соответствие второму закону Кирхгофа.

Одиночный контур электрической цепи

Второй закон Кирхгофа гласит, что алгебраическая сумма разностей потенциалов каждого замкнутого контура равна нулю. Демонстрационная схема действия Второго закона Кирхгофа для замкнутой цепи с двумя резисторами и источником ЭДС. Если принять условие, что два резистора R1 и R2 соединены последовательно, оба элемента являются частью одной цепи. В результате через каждый из резисторов протекает одинаковый ток.

Таким образом, падение напряжения на резисторе R1 = I * R1 и падение напряжения на резисторе R2 = I * R2 дают напряжение согласно второму закону Кирхгофа:

V = I * Rs

где: Rs = R1 + R2.

Очевидно, что применение второго закона Кирхгофа к одиночному замкнутому контуру дает формулу для эквивалента или импеданса для последовательной цепи. Допускается расширить эту формулу для нахождения значений капель потенциала по контурной окружности:

I = V / Rs

Vr1 = V * (R1 / R1 + R2)

Vr2 = V * (R2 / R1 + R2)

Есть три резистора с номинальным сопротивлением 10, 20, 30 Ом соответственно. Все три резистивных элемента соединены последовательно с батареей на 12 вольт.

Необходимо рассчитать:

  • полное сопротивление,
  • ток цепи,
  • ток через каждый резистор,
  • падение напряжения на каждом резисторе.

Рассчитываем полное сопротивление:

Ro = R1 + R2 + R3 = 10 Ом + 20 Ом + 30 Ом = 60 Ом

Ток цепи:

I = V / Ro = 12/60 = 0,2 А (200 мА)

Ток через каждый резистор:

I * R1 = I * R2 = I * R3 = 0,2 А (200 мА)

Потенциальное падение на каждом из резисторов:

VR1 = I * R1 = 0,2 * 10 = 2 В

VR2 = I * R2 = 0,2 * 20 = 4 В

VR3 = I * R3 = 0,2 * 30 = 6 В

Таким образом, действует Второй закон Кирхгофа, поскольку отдельные падения напряжения, обнаруживаемые по окружности замкнутого контура, в конечном итоге являются суммой напряжений.

Второй закон Кирхгофа

23 августа 2013. Категория: Электротехника.

Падение напряжений в замкнутом контуре

При расчете электрических цепей нам часто приходится встречаться с цепями, которые образуют замкнутые контуры. В состав таких контуров, помимо сопротивлений, могут входить еще электродвижущие силы, то есть источники напряжений. На рисунке 1 представлен участок сложной электрической цепи.

Задана полярность всех электродвижущих сил (э. д. с.). Произвольно выбираем положительные направления токов. Обходим контур от точки А в произвольном направлении, например по часовой стрелке. Рассмотрим участок АБ.

На этом участке происходит падение потенциала (ток идет от точки с высшим потенциалом к точке с низшим потенциалом).

Рисунок 1. Участок сложной электрической цепи
  • На участке АБ:
  • φА + E1 – I1 × r1 = φБ .
  • На участке БВ:
  • φБ – E2 – I2 × r2 = φВ .
  • На участке ВГ:
  • φВ – I3 × r3 + E3 = φГ .
  • На участке ГА:
  • φГ – I4 × r4 = φА .
  • Складывая почленно четыре приведенных уравнения, получим:
  • φА + E1 – I1 × r1 + φБ – E2 – I2 × r2 + φВ – I3 × r3 + E3 + φГ – I4 × r4 = φБ + φВ + φГ + φА
  • или
  • E1 – I1 × r1 – E2 – I2 × r2 – I3 × r3 + E3 – I4 × r4 = 0.
  • Перенеся произведения I × r в правую часть, получим:
  • E1 – E2 + E3 = I1 × r1 + I2 × r2 + I3 × r3 + I4 × r4.
  • В общем виде

Это выражение представляет собой второй закон Кирхгофа. Формула второго закона Кирхгофа показывает, что во всяком замкнутом контуре алгебраическая сумма э. д. с. равна алгебраической сумме падений напряжений.

Бывают случаи, когда в замкнутом контуре отсутствуют источники э. д. с., тогда применимо другое определение второго закона Кирхгофа – алгебраическая сумма падений напряжений в замкнутом контуре равна нулю.

Видео 1. Второй закон Кирхгофа

Рассмотрим простой замкнутый контур (рисунок 2).

Рисунок 2. Простой замкнутый контур

По второму закону Кирхгофа

  1. откуда
  2. E = I × r0 + I × r = I × (r0 + r),
  3. откуда
  4. Мы получили формулу закона Ома для всей цепи.

Применение первого и второго законов Кирхгофа для расчета электрических цепей

Рисунок 3. Электрическая цепь – к примеру 1

Решим несколько задач, используя закон Ома и оба закона Кирхгофа.

Пример 1. Дана электрическая цепь (рисунок 3). Найти ее ток. Выберем произвольно положительное направление тока. Обходя контур по часовой стрелке, пишем уравнение второго закона Кирхгофа:

– E1 + E2 = I × r1 + I × r2;     – 1,9 + 1,3 = I × (2 + 3);    – 0,6 = 5 × I;I = – 0,12

Знак минус означает, что выбранное нами направление тока противоположно его действительному направлению.

Пример 2. Дана электрическая цепь (рисунок 4). Определить токи на отдельных участках.

  • Произвольно выбираем положительные направления токов.
  • Рисунок 4. Электрическая цепь – к примеру 2
  • Для контура абде:
  • Для контура авге:
6 – 2 = 2 × I1 – 4 × I2;     2 = I1 – 2 × I2. (2)

Для точки Б по первому закону Кирхгофа:

Имеем три уравнения с тремя неизвестными. Решая их, находим величину и направление токов. Подставляя значение тока I3 из уравнения (3) в уравнение (1), получим:

  1. 6 = 2 × I1 + 5 × I1 + 5 × I2;
  2. Сложим уравнения для двух контуров почленно:
  3. (6 = 7 × I1 + 5 × I2) + (2 = I1 – 2 × I2)
  4. или
  5. (12 = 14 × I1 + 10 × I2) + (10 = 5 × I1 – 10 × I2).
  6. Сложив два последних уравнения, имеем:
  7. 22 = 19 × I1, откуда I1 = 1,156 А,
  8. подставляем значение I1 в уравнение (1):
  9. 6 = 2 × 1,156 + 5 × I3,
  • Подставляем значение I1 в уравнение (2):
  • 2 = 1,156 – 2 × I2,
  • откуда

Знак минус показывает, что действительное направление тока I2 обратно принятому нами направлению.

Второе правило Киргхофа

Из третьего уравнения Максвелла вытекает правило Кирхгофа для напряжений. Его ещё называют вторым законом.

При этом токи и ЭДС, векторы которых совпадают с направлением (выбирается произвольно) обхода контура, считаются положительными, а встречные к обходу токи – отрицательными.


Рис. 4. Иллюстрация второго правила Кирхгофа

Формулы, которые изображены на рисунке применяются в частных случаях для вычисления параметров простых схем.

Формулировки уравнений общего характера:

, где где Lk и Ck – это индуктивности и ёмкости, соответственно.

Линейные уравнения справедливы как для линейных, так и для нелинейных линеаризованных цепей. Они применяются при любом характере временных изменений токов и напряжений, для разных источников ЭДС. При этом законы Кирхгофа справедливы и для магнитных цепей. Это позволяет выполнять вычисления для поиска соответствующие параметров.

Задача 1

Дана схема, и известны сопротивления резисторов и ЭДС источников. Требуется найти токи в ветвях, используя законы Кирхгофа.

Используя первый закон Кирхгофа, можно записать n-1 уравнений для цепи. В нашем случае количество узлов n=2, а значит нужно составить только одно уравнение.

Напомним, что по первому закону, сумма токов сходящихся в узле равна нулю. При этом, условно принято считать входящие токи в узел положительными, а выходящими отрицательными. Значит для нашей задачи

Затем используя второй закон (сумма падений напряжения в независимом контуре равна сумме ЭДС в нем) составим уравнения для первого и второго контуров цепи. Направления обхода выбраны произвольными, при этом если направление тока через резистор совпадает с направлением обхода, берем со знаком плюс, и наоборот если не совпадает, то со знаком минус. Аналогично с источниками ЭДС.

На примере первого контура – ток I1 и I3 совпадают с направлением обхода контура (против часовой стрелки), ЭДС E1 также совпадает, поэтому берем их со знаком плюс.

Уравнения для первого и второго контуров по второму закону будут:

Все эти три уравнения образуют систему

Подставив известные значения и решив данную линейную систему уравнений, найдем токи в ветвях (способ решения может быть любым).

Проверку правильности решения можно осуществить разными способами, но самым надежным является проверка балансом мощностей.

2.1.9. Мощность цепи переменного тока.

Мгновенная мощность электрической цепи определяется как:

где — ток и мгновенные напряжения на зажимах цепи.

Среднее значение активной мощности за период переменного тока:

где Т

– период переменного тока;

Это выражение мощности справедливо для любых периодических функций напряжения и тока.

Определим Р для синусоидальных напряжений и токов:

так как

то среднее значение функции за период равно:

Где – коэффициент мощности.

Отсюда следует, что средняя мощность за период зависит от и не равна нулю, если участок цепи имеет активное сопротивление. Активная мощность Р имеет необратимый характер в цепи, так как превращается в тепло на резисторе.

Определим коэффициент мощности и его народнохозяйственное значение. Из выражения для Р определим ток:

При P=const (т.е.потребляемая мощность постоянна) и при уменьшении cos потребляемый ток I будет увеличиваться при одной и той же отдаваемой мощности. Например, при cos=0,5 мощность, передаваемая потребителям, составляет 50% от той, которая передавалась бы при cos=1.

Нормальный коэффициент мощности изменяется от 0,85 до 0,9.

Для повышения нормального коэффициента мощности:

– догружаются двигатели переменного тока до номинальной мощности(или заменяются на двигатели мощности, если те недогружены);

– применяют синхронные двигатели (при большом возбуждении они вызывают в сети опережающий ток);

– включаются параллельно приёмникам конденсаторы.

Реактивная мощность имеет обратимый характер, т.к в течение четверти периода она накапливается в магнитном поле катушки или электрическом поле конденсатора, а затем расходуется:

для индуктивного элемента:

для ёмкостного элемента:

например, для цепи с последовательным соединением С и L:.

Полная мощность цепи – это максимально возможная мощность заданных значений напряжения U и тока I.

Максимальная мощность получается при

Через активную и реактивную мощность она выражается как:

Угол сдвига фаз через активную и реактивную мощность выражается как:

Построим треугольник мощностей (рис. 2.25).

Мощность в комплексной форме:

где – комплексное значение напряжения;

–сопряженное комплексное значение тока.

Задача 2

Зная сопротивления резисторов и ЭДС трех источников найти ЭДС четвертого и токи в ветвях.

Как и в предыдущей задаче начнем решение с составления уравнений на основании первого закона Кирхгофа. Количество уравнений n-1= 2

Затем составляем уравнения по второму закону для трех контуров. Учитываем направления обхода, как и в предыдущей задаче.

На основании этих уравнений составляем систему с 5-ью неизвестными

Решив эту систему любым удобным способом, найдем неизвестные величины

Для этой задачи выполним проверку с помощью баланса мощностей, при этом сумма мощностей, отданная источниками, должна равняться сумме мощностей полученных приемниками. Баланс мощностей сошелся, а значит токи и ЭДС найдены верно.

Источник

Использование закона Кирхгофа о напряжениях в сложной цепи

Закон напряжений Кирхгофа может быть использован для определения неизвестного напряжения в сложной цепи, в которой известны все другие напряжения вдоль определенного «кольца». В качестве примера возьмем следующую сложную схему (на самом деле две цепи последовательно соединены проводом внизу):

Для простоты я опустил значения сопротивления и просто указал падение напряжения на каждом резисторе. Две последовательные цепи имеют общий провод (7-8-9-10 провод), что позволяет измерять напряжение между двумя цепями. Если бы мы хотели определить напряжение между точками 4 и 3, мы могли бы приравнять правило Кирхгофа к напряжению между этими точками как неизвестное:

MI4-3 + MI9-4 + MI8-9 + MI3-8 = 0

МИ4-3 + 12 + 0 + 20 = 0

MI4-3 + 32 = 0

E4-3 = -32 В

Обходя цепь 3-4-9-8-3, мы регистрируем падения напряжения, как это сделал бы цифровой вольтметр, измеряя красным измерительным проводом в точке спереди и черным проводом в точке сзади, когда мы продвигаемся вперед по петля. Следовательно, напряжение в точке 9 относительно точки 4 составляет положительные (+) 12 вольт, потому что «красный провод» находится в точке 9, а «черный провод» – в точке 4.

Напряжение в точке 3 относительно точки 8 составляет положительные (+) 20 вольт, потому что «красный провод» находится в точке 3, а «черный провод» – в точке 8. Напряжение в точке 8 по отношению к точке 9 равно очевидно, ноль, потому что эти две точки электрически общие.

Наш окончательный ответ для напряжения в точке 4 относительно точки 3 – отрицательное (-) 32 вольта, что говорит нам, что точка 3 на самом деле положительна по отношению к точке 4, что показал бы цифровой вольтметр с красным проводом в точке. 4 и черный провод на шаге 3:

Другими словами, первоначальное расположение наших «испытательных проводов» в этой задаче правила напряжений Кирхгофа было «перевернуто». Если бы мы составили наше второе уравнение закона Кирхгофа, начиная с E3-4 вместо E4-3, минуя тот же цикл с противоположной ориентацией наконечника, окончательный ответ был бы E3-4 = +32 вольт:

важно понимать, что ни один из подходов не является «неправильным». В обоих случаях мы приходим к правильной оценке напряжения между двумя точками 3 и 4: точка 3 положительна по отношению к точке 4, а напряжение между ними составляет 32 вольта

Применение

Рекомендуем:

  • Частотный преобразователь для однофазного электродвигателя
  • Электродвигатели асинхронные трехфазные, их достоинства, технические характеристики, виды, особенности
  • Сила тока в цепи: как ее определить?

Формула Первого закона такова:

Для схемы, приведенной ниже, справедливо:

I1 — I2 + I3 — I4 + I5 = 0

Плюсовые — это токи, идущие к точке, а те, что выходят из нее «-».

Записывается это так:

  • k — количество ЭДС источников;
  • m – ветви замкнутого контура;
  • Ii,Ri – их сопротивление i-й и ток.

В данной схеме: Е1 — Е2 + Е3 = I1R1 — I2R2 + I3R3 — I4R4.

  • ЭДС принимается «+» при совпадении ее направления с выбранным направлением обхода.
  • При совпадении направления тока и обхода на резисторе, с плюсом будет также напряжение.

2 закон Кирхгофа

При расчете электрических цепей в большинстве случаев нам встречаются цепи, образующие замкнутые контуры. В состав таких контуров, кроме сопротивлений, могут входить ЭДС (источники напряжений). На рисунке 4 представлен участок такой электрической цепи. Произвольно выбираем положительные направления токов. Обходим контур от точки А в произвольном направлении (выберем по часовой стрелке). Рассмотрим участок АБ: происходит падение потенциала (ток идет от точки с высшим потенциалом к точке с низшим потенциалом).

  • На участке АБ: φА + E1 – I1r1 = φБ.
  • БВ: φБ – E2 – I2r2 = φВ.
  • ВГ: φВ – I3r3 + E3 = φГ.
  • ГА: φГ – I4r4 = φА.
  • Складывая данные уравнения, получим: φА + E1 – I1r1 + φБ – E2 – I2r2 + φВ – I3r3 + E3 + φГ – I4r4 = φБ + φВ + φГ + φА
  • или: E1 – I1r1 – E2 – I2r2 – I3r3 + E3 – I4r4 = 0.
  • Откуда имеем следующее: E1 – E2 + E3 = I1r1 + I2 r2 + I3r3 + I4r4.

Таким образом, получаем формулу второго закона Кирхгофа в комплексной форме:

Уравнение для постоянных напряжений — Уравнение для переменных напряжени —

Теперь можем сформулировать определение 2 (второго) закона Кирхгофа:

Второй закон Кирхгофа гласит, что алгебраическая сумма напряжений на резистивных элементах замкнутого контура, равна алгебраической сумме ЭДС, входящих в этот контур. В случае отсутствия источников ЭДС, суммарное напряжение равно нулю.

Иначе формулируя второе правило Кирхгофа, можно сказать: при полном обходе контура потенциал, изменяясь, возвращается к начальному значению.

При составлении уравнения напряжений для контура нужно выбрать положительное направление обхода контура, при этом падение напряжения на ветви считается положительным, если направление обхода данной ветви совпадает с ранее выбранным направлением тока ветви, в противном случае – отрицательным.

Определить знак можно по алгоритму:

  • 1. выбираем направление обхода контура (по или против часовой стрелки);
  • 2. произвольно выбираем направления токов через элементы цепи;
  • 3. расставляем знаки для напряжений и ЭДС по правилам (ЭДС, создающие ток в контуре, направление которого совпадает с направление обхода контура со знаком «+», иначе – «-»; напряжения, падающие на элементах цепи, если ток, протекающий через эти элементы совпадает по направлению с обходом контура, со знаком «+», в противном случае – «-»).

Закон Ома является частным случаем второго правила для цепи.

Приведем пример применения второго правила Кирхгофа:

По данной электрической цепи (Рис 6) необходимо найти ее ток. Произвольно берем положительное направление тока. Выберем направление обхода по часовой стрелке, запишем уравнение 2 закона Кирхгофа:

Знак минус означает, что выбранное нами направление тока противоположно его действительному направлению.

Решение задач

1. По приведенной схеме записать законы Кирхгофа для цепи.

Дано: Решение:
  • Дано:
  • R1
  • R2
  • R3
  • E1
  • E2
  • I1 – ?
  • I2 – ?
  • I3 – ?
  • Используя первый закон Кирхгофа, запишем уравнение для цепи. Сумма токов сходящихся в узле равна нулю. Примем входящие токи положительными, а выходящие отрицательными. Тогда:
  • Используя второй закон Кирхгофа составим уравнения для первого и второго контуров цепи.
  • Направления обхода произвольны, при этом если направление тока через резистор совпадает с направлением обхода, знак «+», если иначе, то «-». С источниками ЭДС так же.
  • Для первого контура токи I1 и I3 совпадают с направлением обхода, ЭДС Е1 также совпадает, то есть берем их со знаком «+».
  • Для первого и второго контуров по второму закону Кирхгофа получаем следующие уравнения:
  • Таким образом, получаем систему из трех уравнений, являющуюся решением задачи:

2. На рисунке приведена цепь с двумя источниками ЭДС величиной 12 В и 5 В, с внутренним сопротивлением источников 0,1 Ом, работающих на общую нагрузку 2 ома. Как будут распределены токи в этой цепи, какие они имеют значения?.

Закон Кирхгофа для магнитной цепи

Применение независимых уравнений возможно и при расчётах магнитных цепей. Сформулированные выше правила Кирхгофа справедливы и для вычисления параметров магнитных потоков и намагничивающих сил.


Рис. 4. Магнитные контуры цепей

В частности: ∑Ф=0.

То есть, для магнитных потоков первое правило Кирхгофа можно выразить словами: «Алгебраическая сумма всевозможных магнитных потоков относительно узла магнитной цепи равняется нулю.

Сформулируем второе правило для намагничивающих сил F: «В замкнутом магнитном контуре алгебраическая сумма намагничивающих сил приравнивается к сумме магнитных напряжений». Данное утверждение выражается формулой: ∑F=∑U или ∑Iω = ∑НL, где ω – количество витков, H – напряжённость магнитного поля, символ L обозначает длину средней линии магнитопровода. ( Условно принимается, что каждая точка этой линии совпадает с линиями магнитной индукции).

Второе правило, применяемое для вычисления магнитных цепей, есть не что иное, как альтернативная форма представления закона полного тока.

При совпадении векторов магнитного потока с направлениями обхода (на некоторых участках), падение напряжения на этих ветвях берём со знаком « + », а встречные ему – со знаком « – ».

Демонстрация закона напряжений Кирхгофа в параллельной цепи

Правило Кирхгофа напряжения (второй закон Кирхгофа) обычно работает для любой конфигурации цепи, а не только для простых последовательных цепей

Обратите внимание, как это работает для следующей параллельной цепи:

В параллельной схеме напряжение на каждом резисторе равно напряжению питания: 6 вольт. Складывая напряжения по циклу 2-3-4-5-6-7-2, получаем:

begin {matrix} E_ {3-2} = & 0 V & text {напряжение в точке 3 относительно точки 2} \ E_ {4-3} = & 0 V & text {напряжение в точке 2} точке 4 относительно точки 3} \ E_ {5-4} = & -6 V & testo {напряжение в точке 5 относительно точки 4} \ E_ {6-5} = & 0 V & testo {напряжение в точке 6 относительно точки 5} \ E_ {7-6} = & 0 V & text {напряжение в точке 7 относительно точки 6} \ E_ {2- 7} = & + 6 V & text {напряжение в точке 2 относительно точки 7} \ hline \ E_ {2-2} = & 0 В end {matrix}

Обратите внимание, что я обозначил конечное (общее) напряжение как E2-2. Поскольку мы начали наш пошаговый путь по контуру в точке 2 и закончили в точке 2, алгебраическая сумма этих напряжений будет такой же, как напряжение, измеренное между той же точкой (E2-2), что, конечно, должно быть нулевым

Первый закон Кирхгофа

Первый закон Кирхгофа гласит, что в ветвях, образующих узел электрической цепи, алгебраическая сумма токов равна нулю (токи, входящие в узел, считаются положительными, а узел – отрицательным).

Используя этот закон для узла A (рисунок 1), мы можем записать следующее выражение:

Рисунок 1 – Первый закон Кирхгофа

I1 + I2 – I3 + I4 – I5 – I6 = 0.

Попробуйте самостоятельно применить первый закон Кирхгофа для определения силы тока в ветви. На приведенной выше диаграмме показаны шесть ветвей, образующих электрический узел B, причем токи в ветвях входят и выходят из узла. Один из токов i неизвестен.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Электрика
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: