Расчет резистора для светодиода: как подобрать токоограничивающий элемент

Результат расчёта


Как правило окажется, что резисторы с таким номиналом не выпускаются, и вам будет показан ближайший стандартный номинал. Если не удаётся сделать точный подбор сопротивления, то используйте больший номинал. Подходящий номинал можно сделать подключая сопротивление параллельно или последовательно. Расчет сопротивления для светодиода можно не делать, если использовать мощный переменный или подстроечный резистор. Наиболее распространены типа 3296 на 0,5W. При использовании питания на 12В, последовательно можно подключить до 3 LED.

Резисторы бывают разного класса точности, 10%, 5%, 1%. То есть их сопротивление может погрешность в этих пределах в положительную или отрицательную сторону. Не забываем учитывать и мощность токоограничивающего резистора, это его способность рассеивать определенное количество тепла. Если она будет мала, то он перегреется и выйдет из строя, тем самым разорвав электрическую цепь. Чтобы определить полярность можно подать небольшое напряжение или использовать функцию проверки диодов на мультиметре. Отличается от режима измерения сопротивления, обычно подаётся от 2В до 3В.


Таблица зависимости рабочего напряжения светодиода от его цвета.

Так же при расчёте светодиодов следует учитывать разброс параметров, для дешевых они будут максимальны, для дорогих они будут более одинаковыми. Чтобы проверить этот параметр, необходимо включить их в равных условиях, то есть последовательно.

Уменьшая тока или напряжение снизить яркость до слегка светящихся точек. Визуально вы сможете оценить, некоторые будут светится ярче, другие тускло. Чем равномернее они горят, тем меньше разброс. Калькулятор расчёта резистора для светодиода подразумевает, что характеристики светодиодных чипов идеальные, то есть отличие равно нулю.

Напряжение падения для распространенных моделей маломощных до 10W может быть от 2В до 12В. С ростом мощности увеличивается количество кристаллов в COB диоде, на каждом есть падение. Кристаллы включаются цепочками последовательно, затем они объединяются в параллельные цепи. На мощностях от 10W до 100W снижение растёт с 12В до 36В. Этот параметр должен быть указан в технических характеристиках LED чипа и зависит от назначения цвета:

  • синий;
  • красный;
  • зелёный;
  • желтый;
  • трёхцветный RGB;
  • четырёхцветный RGBW;
  • двухцветный;
  • теплый и холодный белый.


Светодиоды.

Прежде чем подобрать резистор для светодиода на онлайн калькуляторе, следует убедится в параметрах диодов. Китайцы на Aliexpress продают множество led, выдавая их за фирменные. Наиболее популярны модели SMD3014, SMD 3528, SMD2835, SMD 5050, SMD5630, SMD5730. Например, чаще всего китайцы обманывают на SMD5630 и SMD5730. Цифры в маркировке обозначают лишь размер корпуса 5,6мм на 3,0мм.

В фирменных такой большой корпус используется для установки мощных кристаллов на 0,5W , поэтому у покупателей диодов СМД5630 напрямую ассоциируется с мощностью 0,5W. Хитрый китаец этим пользуется, и в корпус 5630 устанавливает дешевый и слабенький кристалл в среднем на 0,1W , при этом указывая потребление энергии 0,5W.

Наглядным примером будут автомобильные лампы и светодиодные кукурузы, в которых поставлено большое количество слабеньких и некачественных ЛЕД чипов. Обычный покупатель считает, чем больше светодиодов чем лучше светит и выше мощность. Автомобильные лампы на самых слабых лед 0,1W Чтобы сэкономить денежку, мои светодиодные коллеги ищут приличные ЛЕД на Aliexpress. Ищут хорошего продавца, который обещает определённые параметры, заказывают , ждут доставку месяц. После тестов оказывается, что китайский продавец обманул, продал барахло. Повезёт, если на седьмой раз придут приличные диоды, а не барахло. Обычно сделают 5 заказов, и не добившись результата и идут делать заказ в отечественный магазин, который может сделать обмен.

Комбинированный способ подключения светодиодов

Итак. Подключим наши 15 светодиодов комбинированным способом. Вспомним расчёт для последовательного подключения. Там мы выяснили, что от 12 вольт можем безболезненно запитать 3 светодиода. На каждый из 3-х светодиодов потребуется резистор в 480 Ом. Это и будет наша цепочка — 3 светодиода и резистор. Теперь мы параллельно подключим 5 таких цепочек. При параллельном соединении напряжение питания остаётся неизменным, а сила тока для каждой цепочки умножается на количество цепочек. Получается, нужен источник на 12В и 5*0,025=0,125А. Как видим, такой способ подключения сильно экономит ток.

Достоинства: низкое потребление тока при большой плотности светодиодов, каждая цепочка не зависит от соседних, благодаря наличию собственного токоограничительного резистора.Недостатки: внутри цепочки мы получаем те же проблемы, что и при обычном параллельном соединении. При наличии «кривых» светодиодов в цепочке, она выйдет из строя раньше других.

Комбинированное подключение светодиодов. 3 цепочки по 3 светодиода.

Выводы

При подключении светодиодов к источнику питания предпочтительно использовать параллельное соединение, снабжая каждый светодиод отдельным стабилизатором. При подключении большого количества светодиодов, для удешевления конструкции возможно комбинирование последовательного и параллельного способов соединения светодиодов для достижения оптимального результата.

Расчет резистора для светодиода

Надежная работа светодиода зависит от тока, протекающего через него. При заниженных значениях, он просто не будет светить, а при превышении значения тока – характеристики элемента ухудшатся, вплоть до его разрушения. При этом говорят – светодиод сгорел. Для того чтобы исключить возможность выхода из строя этого полупроводника необходимо подобрать в цепь с включенным в нее, резистором. Он будет ограничивать ток в цепи на оптимальных значениях.

Вычисление номинала сопротивления

Для работы радиоэлемента на него нужно подать питание. По закону Ома, чем больше сопротивление отрезка цепи, тем меньший ток по нему протекает. Опасная ситуация возникает, если в схеме течет больший ток, чем положено, так как каждый элемент не выдерживает большей токовой нагрузки.

Сопротивление светодиода является нелинейным. Это значит, что при изменении напряжения, подаваемого на этот элемент, ток, протекающий через него, будет меняться нелинейно. Убедиться в этом можно, если найти вольт — амперную характеристику любого диода, в том числе и светоизлучающего. При подаче питания ниже напряжения открытия p – n перехода, ток через светодиод низкий, и элемент не работает. Как только этот порог превышен, ток через элемент стремительно возрастает, и он начинает светиться.

Если источник питания соединять непосредственно со светодиодом, диод выйдет из строя, так как не рассчитан на такую нагрузку

Чтобы этого не произошло – нужно ограничить ток, протекающий через светодиод балластным сопротивлением, или произвести понижение напряжения на важном для нас полупроводнике

Рассмотрим простейшую схему подключения (рисунок 1). Источник питания постоянного тока подключается последовательно через резистор к нужному светодиоду, характеристики которого нужно обязательно узнать. Сделать это можно в интернете, скачав описание (информационный лист) на конкретную модель, или найдя нужную модель в справочниках. Если найти описание не представляется возможным, можно приблизительно определить падение напряжения на светодиоде по его цвету:

  • Инфракрасный — до 1.9 В.
  • Красный – от 1.6 до 2.03 В.
  • Оранжевый – от 2.03 до 2.1 В.
  • Желтый – от 2.1 до 2.2 В.
  • Зеленый – от 2.2 до 3.5 В.
  • Синий – от 2.5 до 3.7 В.
  • Фиолетовый – 2.8 до 4 В.
  • Ультрафиолетовый – от 3.1 до 4.4 В.
  • Белый – от 3 до 3.7 В.

Рисунок 1 – схема подключения светодиода

Ток в схеме можно сравнить с движением жидкости по трубе. Если есть только один путь протекания, то сила тока (скорость течения) во всей цепи будет одинакова. Именно так происходит в схеме на рисунке 1. Согласно закону Кирхгоффа, сумма падений напряжения на всех элементах, включенных в цепь протекания одного тока, равно ЭДС этой цепи (на рисунке 1 обозначено буквой Е). Отсюда можно сделать вывод, что напряжение, падающее на токоограничивающем резисторе должно быть равным разности напряжения питания и падения его на светодиоде.

Так как ток в цепи должен быть одинаковым, то и через резистор, и через светодиод ток получается одним и тем же. Для стабильной работы полупроводникового элемента, увеличения его показателей надежности и долговечности, ток через него должен быть определенных значений, указанных в его описании. Если описание найти невозможно, можно принять приблизительное значение тока в цепи 10 миллиампер. После определения этих данных уже можно вычислить номинал сопротивления резистора для светодиода. Он определяется по закону Ома. Сопротивление резистора равно отношению падения напряжения на нем к току в цепи. Или в символьной форме:

R = U (R)/ I,

где, U (R) — падение напряжения на резисторе

I – ток в цепи

Расчет U (R) на резисторе:

U (R) = E – U (Led )

где, U (Led) — падение напряжения на светодиодном элементе.

С помощью этих формул получится точное значение сопротивления резистора. Однако, промышленностью выпускаются только стандартные значения сопротивлений так называемые ряды номиналов. Поэтому после расчета придется сделать подбор существующего номинала сопротивления. Подобрать нужно чуть больший резистор, чем получилось в расчете, таким образом, получится защита от случайного превышения напряжения в сети. Если подобрать близкий по значению элемент сложно, можно попробовать соединить два резистора последовательно, или параллельно.

Подбор мощности резистора

Если подобрать сопротивление меньшей мощности, чем нужно в схеме, оно просто выйдет из строя. Расчет мощности резистора довольно прост, нужно падение напряжения на нём умножить на ток, протекающий в этой цепи. После чего нужно выбрать сопротивление с мощностью, не меньшей рассчитанной.

Повышение яркости

На этапе замены резистора можно было бы остановиться – собрать лампу обратно, приклеить (примотать скотчем) рассеиватель… Но мне свет показался недостаточно ярким. Стал вопрос, как это исправить. Я пошел самым простым путем.

Чтобы увеличить яркость лампочки, взял старенький компакт-диск. Немного доработал и получил мощный отражатель.

  1. Расширил центральное отверстие диска. Для этого использовал столярное «перо» на 35. Можно прорезать отверстие любым другим подручным инструментом. Не суть.
  2. Приклеил плату со светодиодами к диску. Взял термоклей. Намазал его на отражающую сторону CD (по кругу отверстия). Прижал плату задней частью.
  3. Собрал лампочку в обратном порядке. Где нужно, контакты подпаиваем. Местами провода не меняем, даже если длина позволяет. Лампочка будет мерцать.
  4. Проклеил шов в месте прилегания корпуса к CD, чтобы конструкция получилась крепкой и не распалась. Рассеиватель выкинул.

Итог. Из нерабочей светодиодной лампочки получился эдакий мини-прожектор. Смотреть на него некомфортно, но зато гараж освещен на все 200%! Конечно, для дома такой вариант не подойдет. Равно как и для улицы (сырых помещений). Там яркостью придется пожертвовать ради эстетики и безопасности.

Рекомендуем: Долой магнитики: как повысить функциональность вертикальной поверхности холодильника

Предвижу, что многие скажут, а зачем вообще ремонтировать и продлять жизнь светодиодным лампам? Сегодня цена на них ну очень доступная. Выкинуть старую, и купить новую может позволить себе каждый. Но я из принципа решил выжать из нее максимум. Результатом доволен на все сто. В гараже светло как днем. За 3 года ни один светодиод не перегорел. Лампа стала ярче в два раза, и дольше служит уже в три раза (и это не предел)!

Графический расчёт

В большинстве случаев, пользуются математическими вычислениями, но графический способ более наглядный и в каких-то случаях его применять значительно удобнее.

Для построения графика нужно знать характеристики светящегося элемента: ток и напряжение. Теперь можно узнать сопротивление резистора по графику:

На нём пунктирной линией показано вычисление для элемента, на работу которого нужно 20мА тока. Далее соединяем точку пересечения пунктирной линии с “кривой ЛЕД”, отмеченной голубым цветом, со значением напряжения диода. Линия пересекает шкалу максимального тока, где указано нужное значение. После этого нужно провести расчёт сопротивления токоограничивающего резистора: R=ULED/Imax Его мощность: P=I2*R

Схемы подключений светодиодной ленты можно посмотреть здесь.

Светодиоды стали незаменимой частью нашей жизни, они стоят в качестве индикаторов на бытовой технике, в виде декоративных светодиодных лент и в составе оптопары в промышленности, а также в качестве более экологичного и экономного освещения. В использовании светодиодов нет ничего сложного, главное — не забывать использовать балластный резистор, благодаря которому ток будет ограниченно поступать на светящиеся элементы, и они не сломаются. Теперь вы знаете, как рассчитать нужное сопротивление резистора, разные способы соединения диодов и для чего их используют.

Зависимость сопротивления от температуры

Использование резисторов, как термометров, обусловлено почти линейной зависимостью их сопротивления от температуры. Это касается тех резисторов, у которых в качестве резистивного материала используется проволока или металл. Формула зависимости:

  • α – температурный коэффициент, К-1;
  • R0 – сопротивление проводника при 00К;
  • t0 – температура проводника при 00К.

Речь идёт о значении температуры в Кельвинах. При температурах, приближающихся к нулю по Кельвину (-273°С), у множества металлов при охлаждении R скачком падает до нулевой отметки. В этом случае можно говорить о сверхпроводимости.

Интересно. Металлы, имеющие хорошую проводимость при нормальной температуре, могут не быть сверхпроводниками при критической отметки этой физической величины. Сверхпроводники в нормальном состоянии имеют сопротивление большее, чем традиционные тоководы: медные, серебряные или золотые.

При нагревании проводников изменение сопротивления происходит в основном за счёт изменения его удельного значения и имеет линейную зависимость.

Особенности подключения светодиода

Светодиод – это полупроводник, кристалл кремня, который способен проводить напряжение и ток лишь в одном направлении

У лед-лампы (как и у диода) 2 вывода – анод («+») и катод («-»), при подключении важно соблюдать полярность – ток должен проходить от анода к катоду.  На аноде должно быть положительное напряжение, на катоде – отрицательное

Основное отличие от других источников света – невозможность прямого подключения к источнику питания. Это обусловлено другой особенностью – потреблением всего объема мощности, которая передается. Поэтому требуется последовательное подключение к схеме токоограничивающего устройства (резистора), использующего излишки напряжения и электротока.

Светодиод подключается к источнику питания и резистору:

  • последовательно;
  • параллельно;
  • комбинированно.

Для подключения к бытовой электросети существуют специально разработанные схемы и формулы для расчетов.

Разработку схемы и расчеты затрудняет еще одно обстоятельство. Ни один производитель не может указать точные параметры для каждого диода, поэтому определяет средний показатель напряжения при оптимальном уровне электротока для выпущенной партии. Это значит, в процессе разработки схемы и при расчетах по формулам лучше всего при помощи мультиметра определить точные значения.

Существует целый ряд правил, которые обязательно соблюдаются при сборке схемы:

  • цепочка собирается из ламп одного производителя с одинаковыми параметрами;
  • если диодов много, для них требуется радиатор;
  • на входе напряжение не должно превышать 35 В;
  • для пайки необходимо использовать пинцет и качественный маломощный паяльник с максимальной температурой до 260ос;
  • ножки нельзя гнуть под большим углом (у основания они не должны менять положение);
  • требуется плата из оргстекла или другого диэлектрика (предварительно высверливаются отверстия, соответствующие диаметру ламп);
  • в цепочку желательно включать предохранители.

Как правильно подключить светодиод к бортовой сети.

Для правильной работы светодиода необходимо ограничить ток протекающий через него.
Для этого, к бортовой сети светодиод подключается последовательно с токоограничивающим резистором. Необходимость в ограничении тока обосновывается зависимостью срока службы светодиода от проходящего тока, чем он выше тем меньше срок службы. Но следует отметить, что зависимость эта нелинейная и при превышении определенного рекомендованного порога (смотрите Datasheet на вашу модель) диод выходит из строя.

На рисунке приведены несколько вариантов включения светодиодов с резисторами а так же указаны какие из включений являются оптимальными, какие правильными но менее оптимальными в плане энергопотребления, а какое неправильное и приведет к значительному сокращению срока службы светодиодов. С вариантом схемы включения определились, теперь предстоит выяснить какой резистор нужен для светодиода.

Онлайн калькулятор: “Расчет резистора для светодиода”.

Формула для расчета резистора выглядит следующим образом: R= (Uпит – (Uпр.св* N))/I

Где: Uпит- напряжение источника питания Uпр.св- прямое напряжение на светодиоде, N-количество светодиодов, I- ток проходящий через светодиод. Естественно возникает вопрос где взять эти данные? Для тех кто решил махнуть рукой т.к. не знает ничего о названии и происхождении добытых диодов,- скажу не спешите, чуть ниже будет дано универсальное решение вашего вопроса.

Давайте рассмотрим в качестве примера Datasheet на 3 миллиметровый светодиод фирмы kingbright
На рисунке ниже скриншот с указанием характеристик светодиода при силе тока проходящего через него 2 мА при температуре 25С. Из всех представленных характеристик нас интересует лишь Forward Voltage – прямое напряжение на светодиоде.

  • мощности
  • импульсного тока
  • прямого постоянного тока (DC Forward Current) именно это значение нас и интересует, в данном случае нельзя допускать прохождение тока выше 25 миллиампер
    (при температуре 25 градусов по Цельсию).

Последний рисунок иллюстрирует зависимость характеристик от условий использования:

  • зависимость прямого напряжения от проходящего тока
  • зависимость интенсивности светового потока от проходящего тока
  • зависимость проходящего тока от температуры
  • зависимость интенсивности светового потока от от температуры

Исходя из полученных в Datasheet данных можно сделать вывод, что оптимальным является значение проходящего тока от 2 до 10 миллиампер, при этом типовое значение прямого напряжение на выводах светодиода составляет от 1,9 до 2 Вольт.

Пример расчета №1
Если ввести в онлайн калькулятор напряжение бортовой сети 12 (В), значение тока 2 (мА), значение прямого напряжения 1,9 (В) количество светодиодов 1 получим расчетное значение резистора = 5050 Ом Ближайший производственный номинал резистора 5100 Ом или 5,1 кОм маркировка отечественных резисторов 5к1 маркировка smd резистора 512

Пример расчета №2
Если ввести в калькулятор напряжение бортовой сети грузовика 24 (В), значение тока 10 (мА) светим по полной:), значение прямого напряжения 2 (В) количество светодиодов 3 (маленькая гирлянда получилась) расчетное значение резистора = 1800 Ом Ближайший производственный номинал резистора 1800 Ом или 1,8 кОм маркировка отечественных резисторов 1к8 маркировка smd резистора 182

Рекомендации по подключению светодиодов с неизвестными характеристиками:

Светодиодные элементы все чаще применяются в сферах деятельности человечества как осветительные приборы для помещений, в уличных фонарях, карманных фонариках, при освещении аквариума. В автомобильной индустрии группы светодиодов широко используются для подсветки габаритных огней, стоп сигналов и поворотов.

Внешний вид светодиодов

Отдельными элементами с различными цветами обеспечивают подсветку приборной панели, индикацию понижения уровня охлаждающей жидкости радиатора. Невозможно перечислить все направления их использования: от украшения новогодней елки, подсветки аквариума до приборов ракетно-космической техники.

Они постепенно вытесняют обычные лампы накаливания. Многочисленные Интернет магазины в режиме онлайн продают светодиодные ленты и другие осветительные приборы. Также можно найти калькулятор расчета схем драйверов для них, если появится необходимость их ремонта или изготовления своими руками. Такому бурному развитию есть целый ряд причин.

Особенности дешёвых ЛЕД


Сравнение китайской и фирменной светодиодной ленты Низкая стоимость сама по себе не является доказательством плохого качества. Расширение масштабов производства и совершенствование технологических процессов снижает издержки. Однако в соответствующем сегменте рынка представлены изделия производителей, которые в действительности не соответствуют заявленным характеристикам.

Для определения возможных проблем обращают внимание на следующие параметры:

  • в дешевых моделях основные части конструкции делают из алюминия;
  • медные аналоги тяжелее, эффективнее отводят тепло, отличаются стойкостью к механическим воздействиям;
  • в качественном изделии размер кристалла соответствует стандарту (0,762 х 0,762 мм или другому);
  • о недостатках косвенно свидетельствует искажение пропорций рабочей зоны (прямоугольник вместо квадрата);
  • для повышения надежности ответственные производители увеличивают количество проводников, применяют нити из благородных металлов.

Применеие на практике

Среди ролей, которые может выполнять резистор в схеме можно выделить следующие:

Токоограничивающий резистор

Пример, на котором рассматривался Закон Ома представляет собой также пример токоограничевающего резистора: у нас есть компонент, который расчитан на работу при определённом токе — резистор снижает силу тока до нужного уровня.

В случае с Ардуино следует ограничивать ток, поступающий с выходных контактов (output pins). Напряжение, в состоянии, когда контакт включен (high) составляет 5 В. Исходя из документации, ток не должен превышать 40 мА. Таким образом, чтобы безопасно увести ток с контакта в землю понадобится резистор номиналом R = U / I = 5 В / 0.04 А = 125 Ом или более.

Стягивающие и подтягивающие резисторы

Стягивающие (pull-down) и подтягивающие (pull-up) резисторы используются в схемах рядом со входными контактами логических компонентов, которым важен только факт: подаётся ноль вольт (логический ноль) или не ноль (логическая единица). Примером являются цифровые входы Ардуино. Резисторы нужны, чтобы не оставить вход в «подвешенном» состоянии. Возьмём такую схему

Мы хотим, чтобы когда кнопка не нажата (цепь разомкнута), вход фиксировал отсутствие напряжения. Но в данном случае вход находится в «никаком» состоянии. Он может срабатывать и не срабатывать хаотично, непредсказуемым образом. Причина тому — шумы, образующиеся вокруг: провода действуют как маленькие антенны и производят электричество из электромагнитных волн среды. Чтобы гарантировать отсутствие напряжения при разомкнутой цепи, рядом с входом ставится стягивающий резистор:

Теперь нежелательный ток будет уходить через резистор в землю. Для стягивания используются резисторы больших сопротивлений (10 кОм и более). В моменты, когда цепь замкнута, большое сопротивление резистора не даёт большей части тока идти в землю: сигнал пойдёт к входному контакту. Если бы сопротивление резистора было мало (единицы Ом), при замкнутой цепи произошло бы короткое замыкание.

Аналогично, подтягивающий резистор удерживает вход в состоянии логической единицы, пока внешняя цепь разомкнута:

То же самое: используются резисторы больших номиналов (10 кОм и более), чтобы минимизировать потери энергии при замкнутой цепи и предотвратить короткое замыкание при разомкнутой.

Делитель напряжения

Делитель напряжения (voltage divider) используется для того, чтобы получить из исходного напряжения лишь его часть. Например, из 9 В получить 5. Он подробно описан в отдельной статье.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Электрика
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: