Магниточувствительные датчики
Эти выключатели применяются для осуществления контроля положения. Датчики срабатывают при приближении магнита, который расположен на движущейся части механизма. Такие устройства обладают расширенным температурным диапазоном (от -60 до +125 градусов по Цельсию). Подобная функциональность позволяет автоматизировать большое количество сложных производственных процессов.
Бесконтактный датчик температуры магниточувствительного типа применяют:
— на химических и металлургических производствах;
— в районах Крайнего Севера;
— на подвижном составе;
— в холодильных установках;
— на автокранах;
— в бульдозерах;
— в снегоуборочных машинах и т. д.
Свое применение они находят в охранных системах зданий, а также для автоматического открывания окон и входных дверей.
Самыми современными и быстродействующими являются магниточувствительные датчики, работающие на эффекте Холла. Они не подвержены механическому износу, так как обладают электронным выходным ключом. Ресурс таких датчиков практически неограничен. В связи с этим их применение является выгодным и практичным решением задач по измерению числа оборотов вала, фиксации расположения быстро движущихся объектов и т. д.
При измерении уровня жидкостей широко применяют поплавковые магниточувствительные датчики. Они являются оптимальным вариантом для определения необходимых показателей из-за недорогой цены и простоты конструкции.
Индуктивные датчики
Индуктивные датчики, основанные на более старом принципе работы, в последнее время получили более широкое распространение. Однако в отличие от трех других технологий, рассмотренных до сих пор, индукционная технология подходит только для металлических предметов. Индуктивные датчики работают, обнаруживая изменения в их магнитном поле, когда металлические объекты попадают в зону его действия. Это основной принцип работы любого металлоискателя.
Помимо обычных металлодетекторов, индуктивные датчики имеют широкий диапазон обнаружения, обычно от миллиметров до метров. К областям применения могут относится приложения ближнего действия, такие как подсчет оборотов шестерен, или реализации с большим радиусом действия, такие как обнаружение транспортных средств на дорогах. Они лучше всего работают с черными металлами (например, с железом и сталью), но все же могут обнаруживать немагнитные объекты с уменьшенным диапазоном обнаружения. Индуктивные датчики также могут похвастаться чрезвычайно высокой частотой обновления, простым управлением и гибкостью с точки зрения дальности обнаружения. Однако в конечном итоге они ограничены тем, что могут ощущать, и подвержены помехам из различных источников.
Лазерный дальномер
Используя электромагнитные лучи, а не звуковые волны, лазерные дальномеры работают по тем же принципам, что и ультразвуковые датчики. Хотя в последние годы эта технология стала более экономически жизнеспособной, она по-прежнему является гораздо более дорогим вариантом по сравнению с ультразвуковыми и другими технологиями. Технология лазерного дальномера действительно имеет чрезвычайно большую дальность обнаружения до сотен или тысяч метров, а также быстрое время отклика. Из-за того, что скорость света намного превышает скорость звука, измерение времени пролета может быть проблемой для датчиков лазерного дальномера. Здесь можно использовать такие реализации, как интерферометрия, для снижения затрат и повышения точности.
Как упоминалось ранее, лазерный дальномер – безусловно, самая дорогостоящая технология, обсуждаемая в этой статье, что делает ее менее доступной для многих инженеров. Лазеры, используемые в этой сенсорной технологии, также потребляют много энергии, что ограничивает их использование в портативных устройствах, а также подвергает пользователей потенциальным рискам для безопасности глаз. В зависимости от предполагаемого применения относительно сфокусированная зона восприятия лазера и отсутствие дисперсии можно рассматривать как преимущество или ограничение. Лазерные дальномеры также плохо работают с водой или стеклом.
Принцип действия установок для генерации ультразвуковых колебаний
Ультразвуковые установки, используемые для размерной обработки материалов (рис. 1) содержат:
- генератор электрических колебаний;
- акустический преобразователь;
- ультразвуковую колебательную систему, систему подачи и отвода охлаждающей жидкости и суспензии с абразивом.
Рисунок 1 – Схема установки для ультразвуковой размерной обработки (а) и схемы концентраторов: экспоненциального (б), конического (в) и ступенчатого (г): 1 – генератор; 2 – акустический преобразователь; 3-ультразвуковая колебательная система; 4 – система подачи охлаждающей жидкости и суспензии с абразивом
Ультразвуковые генераторы предназначены для преобразования электрического тока промышленной частоты (50 Гц) в ток высокой частоты.
Акустический преобразователь предназначен для преобразования электрических высокочастотных колебаний в механические. Для целей размерной обработки преимущественно применяются магнитострикционные и пьезоэлектрические преобразователи.
В магнитострикционных преобразователях используется эффект продольной магнитострикции, заключающийся в изменении длины сердечника из ферромагнитного материала, помещенного в магнитное поле. Простейший магнитострикционный преобразователь представляет собой сердечник, выполненный в виде стержня или рамки с обмоткой возбуждения. При прохождении по обмотке переменного электрического тока в сердечнике наводится переменное магнитное поле, и возникают упругие деформации, вызывающие продольные колебания сердечника.
Для уменьшения потерь на токи Фуко металлические сердечники набирают из штампованных тонких пластин или наматывают из тонкой ленты. Магнитострикционные преобразователи выполняются с водяным охлаждением. Их максимальный электроакустический КПД в диапазоне частот 20…30 кГц составляет 50…70 %. С повышением частоты колебаний его значение уменьшается.
Магнитострикционные преобразователи изготавливают также из ферритов. Потери на вихревые токи у них практически отсутствуют. Поэтому сердечники из ферритов выполняют монолитными. Для их подмагничивания используют пластины ферритовых постоянных магнитов, которые вставляют или вклеивают в магнитопровод преобразователя. Электроакустический КПД ферритовых преобразователей достигает 80…85 %. Они не требуют высокого напряжения питания, принудительного водяного охлаждения.
В пьезоэлектрических преобразователях используется пьезоэлектрический эффект, сущность которого состоит в том, что в кристаллах с определённым типом решёток под действием электрического тока возникают внутренние напряжения, пропорциональные напряженности электрического поля. В результате размеры кристалла изменяются в соответствии с изменением электрического тока.
Все пьезоэлектрические материалы подразделяются на естественные и искусственные. Естественные – это кварц, сегнетовая соль, турмалин; искусственные – керамики титаната бария ЦТС-19 и титаната свинца ЦТС-23.
Преобразователи из кварца дорогие, а их размеры ограничены. Пьезокерамика значительно дешевле и требует меньших возбуждающих напряжений.
Колебательная система предназначена для передачи возникающих в преобразователе колебаний к рабочим узлам установки и в конечном итоге к обрабатываемой поверхности. В состав колебательной системы входят: волновод, концентратор, инструмент.
Волновод – это стержень или труба постоянного сечения, соединяющая акустический преобразователь с концентратором.
Концентратор предназначен для увеличения амплитуды механических колебаний инструмента путём обеспечения резонанса частот вибратора (магнитострикционного или пьезоэлектрического) с исполнительным инструментом. Основные формы концентраторов представлены на рисунке 1 б, в, г.
Режимы работы ультразвукового датчика
УЗ-прибор может работать в различных режимах. Количество доступных режимов зависит от производителя и программного обеспечения, используемого для управления работой прибора. Но, как правило, у всех устройств они примерно одинаковы.
В режиме непрерывной работы, звуковые волны отправляются циклически, через равные промежутки времени. При обнаружении объекта датчик передает показания на микроконтроллер. В режиме генерации одного импульса, датчик посылает один импульс и делает считывание. Некоторые датчики могут одновременно обнаруживать несколько объектов при работе в этом режиме (при этом каждое считывание записывается в структуру данных).
Стандартно, УЗ-датчики работают в активном режиме — генерируют звук, а затем ждут его отражения. Датчик, работающий в пассивном режиме, не генерирует звук, он прослушивает импульсы, излучаемые другими УЗ-устройствами.
Ультразвуковой датчик HC-SR04
Ультразвуковой датчик HC-SR04 — Ultrasonic Ranging Module HC — SR04 — Ultrasonic Sensor Distance Measuring Module — Sonar
Ультразвуковой дальномер HC SR04 самый известный датчик для применения в Arduino, Raspberry
Pi, ESP8266 и ESP32 модулях. Позволяет измерять расстояние до объекта в диапазоне от 2 до 400 (180) см. Например, если вы хотите собрать робота, который объезжает преграды, то данный дальномер прекрасно подойдет для ваших задач. Датчик имеет небольшие габариты и простой интерфейс. Рис. 4 Внешний вид ультразвукового датчика (сонара, ультразвукового сенсора, ультразвукового модуля) HC-SR04
Конструктивные особенности
Ультразвуковые датчики оснащены генератором звуковых волн, что работает на частоте от 20 до 60 кГц (этот показатель зависит от производителя). Генератор излучает УЗ волны, которые отражаются от предметов в радиусе их действия и возвращаются в приемник. При обнаружении движения частота отражённой волны меняется, что и отражается на приемнике. В результате подается сигнал на включение света.
Сам корпус устройства может быть выполнен из высокопрочного пластика, металла. Зависит это от назначения датчика. Кроме того, предусматривается защита линзы от механических повреждений. В этом случае применяется прочное каленое стекло. Всё зависит от производителя и требований к устройству. Крепление конструкции чаще осуществляется на кронштейн, что входит в комплект. Но иногда его приобретают отдельно.
Работа ультразвукового датчика в режимах допплера
Рассмотрим прам из видов доплера – режиме постоянного доплера. Суть метода заключается в применении эффекта Доплера.
Звук, отражаясь от подвижного объекта, меняет свою частоту. В зависимости от направления движения объекта и его скорости, Эта разница, или сдвиг частот, называется Допплеровским. Он будет изменяться с течением времени.
В данном режиме одна половина кристаллов датчика работает на излучение ультразвука, а вторая – на прием. Сравнивая принятый сигнал с отправленным, мы получим частотный допплеровский сдвиг ультразвука.
По значению сдвига можно высчитать скорость движения тканей или жидкостей в организме. Допплеровский сдвиг часто лежит в пределах слышимых человеком частот (20Гц-20кГц), поэтому его в качестве дополнительного источника информации выводят в форме звука, через динамик аппарата.
Существуют и другие режимы работы УЗ-сканера, в которых работа датчика отличается от изложенных выше, как программно, так и аппаратно.
Для всех типов датчиков указаны основные параметры и характеристики, описание, области применения. Рассмотрим основные (типовые) неисправности и поломки каждого типа и ремонт УЗИ датчиков.
Как использовать?
Чтобы датчики работали исправно, их устанавливают в дверных проемах и особых зонах в доме или на участке
Если они используются для освещения, важно располагать их так, чтобы при перемещениях человека свет во всех частях помещения горел, пока человек не покинет его. На больших площадях устанавливают от двух приборов так, чтобы они охватывали всю территорию
В помещениях лучше использовать потолочные модели.
Схема выше: Принцип работы ультразвуковых сенсоров.
При размещении ультразвуковых контроллеров движения важно, чтобы свет ламп не попадал на них, а на их пути отсутствовали перегородки. В радиусе действия контроллера нельзя устанавливать крупные предметы, они затруднят обзор
Кондиционеры и другие отопительные приборы влияют на правильную работу датчика, поскольку нагретый воздух двигается, что воспринимается за движение объекта.
При расположении контроллеров на улице, надо заранее прочертить план территории. На пути у ультразвуковых волн не должно быть других построек, высоких деревьев и ярких осветительных приборов, направленных на них. Кроме того, датчикам нет места в зонах воздействия атмосферных осадков и прямых солнечных лучей. Не помешает периодическая чистка линз и корпуса от загрязнений.
Получение ультразвука
Ультразвук, используемый в медицине, основан на пьезоэлектрическом воздействии. Так называется возможность кристаллов и керамики искажаться при воздействии на них электрического напряжения. Когда это происходит, возникают УЗ-волны. Данный эффект имеет обратную связь, когда пьезоэлектрический кристалл вызывает напряжение, которое можно замерить.
Когда образовывается волна ультразвука, она начинает свое движение в соединяющей среде, позволяющей увеличить проходимость между УЗ и предметом анализа. В медицинских обследованиях данным сопроводителем является УЗ-гель.
Типы ультразвуковых датчиков
В зависимости от расположения пьезоэлектрических элементов различают три типа УЗ-датчиков:
-
линейные;
-
секторные;
-
конвексные.
В линейных датчиках пьезоэлектрические элементы расположены вдоль прямой раздельно или группами и излучают УЗ-волны в ткани параллельно. После каждого прохождения через ткани появляется прямоугольное изображение (за 1 с — порядка 20 изображений или более). Преимущество линейных датчиков состоит в возможности получения высокого разрешения вблизи расположения датчика (т.е. относительно высокое качество изображения в ближней зоне), недостаток – в небольшом поле УЗ-обзора на большой глубине (объясняется это тем, что, в отличие от конвексного и секторного датчиков, УЗ-лучи линейного датчика не расходятся).
Датчик с фазированной решеткой напоминает линейный датчик, но имеет меньшие размеры. Он состоит из ряда кристаллов с раздельной настройкой. Датчики этого типа создают на мониторе изображение секторного датчика. В то время как в случае механического секторного датчика направление УЗ-импульса определяется поворотом пьезоэлемента, при работе с датчиком с фазированной решеткой направленный сфокусированный УЗ-луч получают путем смещения по времени (фазовый сдвиг) всех активируемых кристаллов. Это значит, что отдельные пьезоэлектрические элементы активируются с задержкой по времени и в результате УЗ-пучок излучается в косом направлении. Это позволяет фокусировать УЗ-луч в соответствии с поставленной задачей исследования (электронное фокусирование) и одновременно существенно улучшить разрешение в нужной части УЗ-изображения. Еще одно преимущество состоит в возможности динамического фокусирования принимаемого сигнала. При этом фокус во время приема сигнала устанавливают на оптимальную глубину, что также заметно улучшает качество изображения.
В механическом секторном датчике в результате механического колебания элементов преобразователя УЗ-волны излучаются в различных направлениях, поэтому формируется изображение в виде сектора. После каждого прохождения через ткань формируется изображение (10 и более за 1 с). Преимущество секторного датчика состоит в том, что он позволяет получить широкое поле обзора на большой глубине, а недостаток — в невозможности исследования в ближней зоне, так как поле зрения вблизи датчика слишком узкое.
В конвексном датчике пьезоэлектрические элементы расположены друг возле друга по дуге (изогнутый датчик). Изображение по качеству представляет собой нечто среднее между изображением, получаемым линейным и секторным датчиками. Конвексный датчик, как и линейный, характеризуется высоким разрешением в ближней зоне (хотя оно и не достигает разрешения линейного датчика) и при этом широким полем обзора в глубине тканей — подобно секторному датчику.
Производители и модели
На рынке контроллеры движения представлены модели из Китае и производителей других стран. Они стоят дороже аналогов из КНР, но имеют высокий гарантийный срок.
Надежные и простые в установке датчики Schneider.
- Argus Standard 360: проводной, обзор 360°, внутренний, способ установки горизонтальный и вертикальный.
- Argus Standard 120: проводной, обзор 120°, наружный, способ установки горизонтальный и вертикальный.
- Argus Standard 360: проводной, обзор 360°, наружный, способ установки горизонтальный и вертикальный, в комплекте есть специальный уголок для установки на внешнем углу фасада.
Модели Schneider отличаются малым весом и надежностью. Внешне они практически похожи.
Датчики производителя IEK:
- ДД 009 1100 Вт: проводной, обзор 180°, дальность 12 м, настенно-потолочный.
- ДД 018В 1100 Вт: проводной, обзор 270°, дальность 12 м, угловой.
- ДД 024 1100 Вт: проводной, обзор по горизонтали 120°, по вертикали 360°; дальность 7 м, потолочный.
Корпус оборудования IEK сделан из прочного поликарбоната. Устройство регулируется под нужные параметры.
Приборы движения DELUX:
- YCA1006A (180): проводной, обзор 180°, дальность 11 м, настенный, наружный.
- YCA1009 (180): проводной, обзор 140-180°, дальность 12 м, настенный, наружный.
- YCA1020B (360): проводной, обзор 360°, дальность 11 м, потолочный, настенный; внутренний, наружный.
Приборы производителя DELUX в том компактные, легкие, их легко устанавливать, их способ управления — автоматический. Приборы движения DELUX функционируют при температуре окружающей среды в -20…+40°С, их устанавливают внутри и снаружи помещения.
Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните накарту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.
Проблемы и методы их устранения
В случае поломки или при обнаружении неисправности в контроллере движения, следует сразу же обратиться в мастерскую. Опытный мастер устранит проблему и приведет прибор в рабочее состояние. Не стоит заниматься самостоятельной починкой, если нет опыта в подобных делах.
Чаще встречается такая проблема, когда датчик зацикливается после срабатывания на движение. Это происходит из-за малой ёмкости конденсаторов, расположенных в схеме устройства. Проблема устраняется легко – заменяют этот элемент на другой, большей ёмкости. Другая распространенная проблема – ложное срабатывание. Избавиться поможет правильный монтаж. При грамотной установке ложные срабатывания не встречаются.
Чаще ложное срабатывание происходит на сложных объектах либо при технических неисправностях самого датчика. В последнем случае надо произвести тестирование всего оборудования, делается это в мастерской. Но чаще причина ложного срабатывания кроется в соединении. Проверьте, чтобы на проводах не было скруток и непрочных контактов. Если прибор неправильно отрегулирован, проверьте настройку.
Если датчик постоянно срабатывает без видимой причины, это не значит, что он обязательно сломался. Возможно причина — животные или сквозняк. Это устраняется перенастройкой оборудования самостоятельно. В других случаях рекомендуется обратиться к специалистам.
Меры предосторожности при работе с ультразвуковыми датчиками
Между кристаллической матрицей датчика и телом пациента располагается ряд согласующих материалов для лучшего проникновения и дополнительной фокусировки УЗ-луча. Это согласующие слои самого датчика, акустическая линза и согласующий акустический гель.
Необходимо помнить, что применять следует гель из рекомендуемого производителем списка, поскольку гели отличаются физическими параметрами. Использование «неправильного» геля будет приводить к перегреву пьезокристаллической матрицы, согласующих слоев и линзы, а также к повышенной нагрузке на электронные блоки формирования высокого напряжения и усиления принятого сигнала.
Таким образом, кажущаяся необоснованность и экономия от использования более дешевого геля приведет к поломке датчика и дорогостоящему ремонту самого аппарата, а в некоторых случаях даже электротравмам пациента или врача, так как на головку датчика подается высокое электрическое напряжение.
Если у Вас все же возникла проблема с датчиком, не спешите его списывать:
Несмотря на всю сложность, ремонт датчиков УЗИ возможен практически в любом случае.
Применение сенсоров ультразвукового излучения в робототехнике
Главная задача, решаемая в робототехнике с помощью датчиков этого вида — ориентирование робота на местности, предотвращение столкновений и обеспечение обхода препятствий.
Достоинства систем ориентации, построенных на ультразвуковых датчиках:
- цена;
- проста в изготовлении, так как монтируется из легкодоступных элементов;
- при интегрировании в роботизированные устройства не требуется менять схему управления робота;
- универсальность;
- нечувствительность к неблагоприятным факторам окружающей среды: задымленность, запыленность, отсутствие света, высокая влажность.
Учитывая незначительную дистанцию действия сенсоров в воздушной среде, их применяют в пространствах ограниченного объема искусственного или естественного происхождения, с твердыми и ровными поверхностями. Это обеспечивает получение устойчивого эхо-сигнала. В таких условиях информация ультразвукового дальномера объективна. Для кругового обзора необходимо увеличение количества датчиков. Определение расстояние до преграды в движении, остановка и объезд достигается программными средствами.
Ультразвуковые сенсорные системы широко применяются в подводных роботах, являясь основными средствами контроля окружающего пространства. Здесь в качестве гидроакустических преобразователей используют магнитострикционные излучатели, обладающие большой акустической мощностью.
Заключение
Различные улучшения в дорожной безопасности, внедряемые изготовителями автомобилей и, особенно, системы активной безопасности остаются в фокусе внимания как потребителей, так и правительств государств. Основное назначение этих систем — уменьшение числа аварий, которое все еще остается значительным. Так, согласно недавнему исследованию ABI Research в автомобильных авариях в США и Европе гибнут ежегодно более 40 000 людей. Анализ возможностей технологий безопасности, которые включают ультразвуковые, радарные, лидарные системы и видеодатчики, глобальных направлений, а также обсуждение существующей продукции в рамках данного цикла предназначены ответить на вопрос, какие из конкурирующих технологий и в каких применениях сегодня предлагают наилучшие характеристики — для того чтобы эта информация затем могла быть использована как разработчиками, так и потребителями этих технологий.
Итоги
При выборе технологии датчика приближения следует учитывать множество факторов. Понимание преимуществ и компромиссов различных технологий, обсуждаемых в этой статье, может облегчить этот процесс выбора.
Хотя каждая технология имеет наиболее подходящее применение, ультразвуковые датчики часто являются хорошим общим выбором из-за их низкой стоимости, способности обнаруживать присутствие и измерять расстояние и, как правило, простой реализации. Вот почему ультразвуковые датчики используются в таком широком спектре конструкций, продолжая находить новые применения.
digitrode.ru