Вспомогательная или пусковая обмотка в однофазном моторе
Для самостоятельного запуска и начала вращения на однофазном электродвигателе специально установлена еще одна катушка. Только благодаря ей ротор и вал приходят в движение и начинают вращаться.
Такую катушку (пусковую) устанавливают на статоре, но смещают относительно рабочей на 90 градусов. То есть вспомогательная и основная обмотки перпендикулярны друг другу. А чтобы были сдвинуты не только катушки, но и токи, к цепи подключают элемент, который называют фазосдвигающим.
Сдвигать фазы можно с помощью следующих устройств:
- активного резистора;
- конденсатора;
- индуктивной катушки.
Нужно отметить, что двигатель с конденсатором, подключенным в качестве фазосдвигающего элемента, будет выдавать лучшие показатели при работе и запуске.
Основные детали двигателя – статор и ротор, сделаны из металла. Для их производства доходит лишь определенный вид металла. Это электротехническая сталь марки 2212.
Цилиндрический КОНДЕНСАТОР
Ёмкость цилиндрического конденсатора |
Относительная диэлектрическая проницаемость |
Радиус внутренней обкладки |
Радиус внешней обкладки |
Длина цилиндрического конденсатора |
Полученные характеристики цилиндрического конденсатора |
Цилиндрический конденсатор представляет в простейшем случае две трубки разного диаметра вложенных друг в друга. разделенных диэлетриком
Иногда может получится так, что ёмкость цилиндрического конденсатора станет отрицательной величиной. Ничего страшного, это лишь говорит о том что Вы перепутали радиусы внешней и внутренней оболочки местами.
Расчет понижающего конденсатора >>
Формулы для вычисления
Электрической ёмкости в фарадах, посредством математических выражений
Ёмкость, которую может накапливать и хранить конденсатор, как потенциальную электрическую энергию – величина постоянная. Она пропорциональна заряду и обратно пропорциональна приложенному напряжению. Математическое выражение фарада выглядит так:
Где:
- C – ёмкость конденсатора,
- Q – заряд,
- U – приложенное напряжение.
Из приведённого выражения следует, что, изменяя прикладываемое напряжение, можно регулировать величину самого заряда.
Единица измерения электрической ёмкости – фарад – может выражаться (рассчитываться) и через иные единицы измерения, действующие в системе СИ:
Здесь: F – фарад, C – кулон, V – вольт, A – ампер, s – секунда, J – джоуль, N – ньютон, m – метр, W – ватт, kg – килограмм, Ω – ом, Hz – герц, H – генри.
Расчет емкости конденсатора с помощью онлайн калькулятора
Расчет конденсатора онлайн
, который можно произвести с помощью калькуляторов на специальных ресурсах в Интернете, позволяет в считанные секунды получить результат, просто указав в соответствующих полях нужные данные. С их помощью быстро и легко можно рассчитать емкость, заряд, мощность, ток, энергию, и другие свойства конденсатора, нужные для конкретного устройства.
Среди множества видов конденсаторов существует, так называемый, электролитический тип, который используется в асинхронных электродвигателях. Среди его видов выделяют полярный и неполярный. Электролитический полярный конденсатор отличается от неполярного, прежде всего, большей емкостью. Расчет конденсатора для электродвигателя
обязательно необходим перед его подключением. Он позволит, к примеру, узнать нужную емкость для конкретного двигателя.
Расчет конденсатора для трехфазного двигателя
требуется ещё и для того, что, обычно, если трехфазный асинхронный двигатель с конденсаторным пуском работает нормально, будучи включенным в однофазную сеть, то емкость конденсатора уменьшается, а частота вращение вала увеличивается. При правильном подключении, все эти характеристики будут наблюдаться.
Когда запускается асинхронный двигатель, подключением к сети 220В, необходима высокая емкостьфазодвигающего конденсатора. В Интернете всегда можно найти специальный калькулятор конденсаторов онлайн
, который, в частности, позволяет рассчитать их емкость. Калькулятор, который позволяет произвестирасчет соединения конденсаторов , а именно емкости двух параллельно соединенных приборов: рабочего и пускового, требует указания в соответствующих полях следующих данных:
- Соединение обмоток двигателя
- Его мощность
- Напряжение в сети
- Коэффициент мощности
- КПД двигателя
После указания всех этих данных, можно получить результаты в виде информации по емкости пускового и рабочего конденсаторов, которая измеряется в мкФ (микроФарадах). Расчет емкости конденсатора для двигателя
, а именно для двух, соединенных между собой конденсаторов, в данном случае, зависит от того, каким был способ соединения их обмоток.
Расчет пускового конденсатора
и параллельно рабочего предполагает указание двух таких способов подключения как: подключение звездой и треугольником.Формула расчета емкости конденсатора , подключенного звездой, выглядит так: Cр=2800*I/U, аформула расчета конденсатора , подключенного треугольником – это Cр=4800*I/U.Расчёт ёмкости конденсатора для электродвигателя по таким формулам расшифровывается следующим образом:
- Ср означает рабочий конденсатор, пусковой будет обозначаться далее как Сп.
- Ток I определен тут соотношением мощности мотора P с произведением 1,73 напряжения U и коэффициента мощности (cosφ ) с коэффициентом поленого действия (η). То есть I=P/1,73Uηcosφ.
Каждый калькулятор емкости конденсаторов
использует свой тип расчета. Например, если говорить о соединенных конденсаторах, где емкость пускового прибора должна быть подобрана в 3 раза большая, чем рабочая емкость, то, в конкретном калькуляторе может быть использован расчет Cп=2,5*Cр, где Сп означает пусковой конденсатор, а Ср – рабочий тип.
Параллельное и последовательное соединение конденсаторов
Элементы цепи могут быть подключены двумя способами:
Проиллюстрируем данные подключения на примере двух конденсаторов (рис. 1).
последовательное соединение конденсаторов
Рис. 1. Последовательное соединение конденсаторов
Логическая зарядка конденсаторов происходит как показано на рис.1. Приходя из цепи, электрон останавливается на левой обкладке (пластине) конденсатора. При этом, благодаря своему электрическому полю (электризация через влияние), он выбивает другой электрон с правой обкладки, уходящий дальше в цепь (рис. 1.1). Этот образовавшийся электрон приходит на левую обкладку следующего конденсатора, соединённого последовательно. И всё повторяется снова. Таким образом, в результате «прохождения» через последовательную цепь конденсаторов «одного» электрона, мы получаем заряженную систему с одинаковыми по значению зарядами на каждом из конденсаторов (рис. 1.2).
Кроме того, напряжение на последовательно соединённой батареи конденсаторов есть сумма напряжений на каждом из элементов (аналог последовательного сопротивления проводников).
Рис. 2. Последовательное соединение конденсаторов
Часть задач школьной физики касается поиска общей электроёмкости участка цепи, логика такого поиска: найти такую электроёмкость, которым можно заменить цепь, чтобы параметры напряжения и заряда остались неизменными (рис. 2). Пусть заряд на обоих конденсаторах — (помним, что они одинаковы), электроёмкости — , и соответствующие напряжения — и .
- где
- — напряжение на первом конденсаторе,
- — электроёмкость первого конденсатора,
- — заряд конденсатора.
- где
- — напряжение на втором конденсаторе,
- — электроёмкость второго конденсатора,
- — заряд конденсатора.
- где
- — напряжение полной цепи,
- — электроёмкость общего конденсатора,
- — заряд общего конденсатора.
Памятуя о том, что конденсаторы соединены последовательно, получаем:
Или в общем виде:
- где
- — электроёмкость последовательно соединённых конденсаторов,
- — сумма обратных емкостей.
Для цепи из двух последовательных соединений:
параллельное соединение конденсаторов
Рис. 3. Параллельное соединение конденсаторов
Параллельное подключение конденсаторов представлено на рисунке 3. При внесении электрона в систему, у него есть выбор: пойти на верхний или нижний конденсатор. При большом количестве электронов заполнение обкладок конденсатора происходит прямо пропорционально электроёмкости конденсаторов.
Рис. 4. Параллельное соединение конденсаторов. Поиск полной электроёмкости
Опять попробуем решить задачу по поиску полной ёмкости конденсаторов (рис. 4). Помним, что при параллельном подключении напряжения на элементах одинаковы, тогда:
- где
- — заряд на первом конденсаторе,
- — электроёмкость первого конденсатора,
- — напряжение на первом конденсаторе.
- где
- — заряд на втором конденсаторе,
- — электроёмкость второго конденсатора,
- — напряжение на втором конденсаторе.
- где
- — заряд на общем конденсаторе,
- — электроёмкость полного конденсатора,
- — напряжение на общем конденсаторе.
С учётом того, что , получим:
Или в общем виде:
- где
- — электроёмкость параллельно соединённых конденсаторов,
- — сумма электроёмкостей последовательно соединённой цепи.
Вывод: в задачах, в которых присутствует цепь, необходимо рассмотреть, какое конкретно соединение рассматривается, а потом использовать соответствующую логику рассуждений:
-
для последовательного соединения
- заряды всех конденсаторов одинаковы: .
- напряжение во всей цепи есть сумма напряжений на каждом из элементов: ,
- полная электроёмкость цепи конденсаторов, соединённых последовательно равна: .
-
для параллельного соединения
- заряд системы конденсаторов есть сумма зарядов на каждом из них: ,
- напряжение на каждом из элементов одинаково: ,
- полная электроёмкость цепи конденсаторов, соединённых параллельно равна: .
Эксплуатационные характеристики
Не идеальные, но реальные конденсаторы обладают рядом дополнительных характеристик помимо тех, о которых сказано выше. Среди них:
- Зависимость между ёмкостью и температурой.
- Потери диэлектрического характера.
- Сопротивление материала, из которого изготовлены обкладки.
- Ток утечки.
- Уровень полярности.
- Номинальное напряжение.
Важно разобраться, какой источник может быть у потерь. Но для этого необходимо разобраться с таким понятием, как графики синусоидного тока, различные направления этого вида энергии
В обкладках ток равен нулю, когда конденсатор набрал максимальный заряд. Напряжение в этом случае у изделия отсутствует. То есть, по фазе напряжение вместе с током сдвигаются на угол в 90 градусов. Идеальная ситуация — когда у конденсатора появляется только реактивная мощность.
Важно. Но реальность такова, что у обкладок появляется собственное сопротивление
Часть энергии нужна, чтобы температура диэлектрика повысилась до определённого уровня. Из-за этого и появляются потери внутри конструкции. Эта характеристика в большинстве случаев остаётся незначительной, но в некоторых ситуациях пренебрегать ей не получится.
Тангенс угла диэлектрических потерь — главная единица измерения, применяемая в этом случае. Это соотношение между активной и реактивной разновидностями мощности. Измерение величины возможно, но только в теоретическом плане. Иначе рассчитать результаты невозможно.
Назначение и подключение пусковых конденсаторов для электродвигателей
Перед тем, как подключать трехфазный электродвигатель в однофазную сеть убедитесь, что его обмотки соединены «треугольником» см. При этом частота вращения двигателя практически не отличается от его частоты при работе в трёхфазном режиме. На рисунке показаны клеммные колодки электродвигателей и соответствующие им схемы соединения обмоток. Эти пучки проводов представляют собой «начала» и «концы» обмоток двигателя. При включении трёхфазного электродвигателя в однофазную сеть, в схему «треугольник» добавляются пусковой конденсатор Сп, который используется кратковременно только для запуска и рабочий конденсатор Ср. В качестве кнопки SB для запуска эл.
Наибольшая нагрузка на электродвигатель действует на момент его старта. Именно в этой ситуации пусковой конденсатор начинает работать. Также отметим, что во многих ситуациях пуск проводится под нагрузку.
На нашем сайте собрано более бесплатных онлайн калькуляторов по математике, геометрии и физике. Не можете решить контрольную?! Мы поможем! Более 20 авторов выполнят вашу работу от руб!
Конденсатор — электронный компонент, предназначенный для накопления электрической энергии. По характеру работы он относится к пассивным элементам. В зависимости от режима работы, в которой работает элемент, различают конденсаторы постоянной емкости и переменной как вариант — подстроечные. По виду рабочего напряжения: полярные — для работы при определенной полярности подключения, неполярные — могут использоваться как в цепи переменного, так и постоянного тока. При параллельном соединении результирующая емкость суммируется
Это важно знать при подборе необходимой емкости для электрической цепи. Пусковой конденсатор предназначен для кратковременной работы — запуск двигателя
Конденсатор представляет собой пассивный электронный компонент, который имеет два полюса с определенным или переменным значением емкости. Еще он обладает малой проводимостью
Важно разобраться, для чего нужно конденсатор в электродвигателе и автомобиле , поскольку согласно информации, представленной на форумах, у многих людей неправильное представление по этому поводу, и они просто недооценивают значимость этого устройства
Техническое исполнение конденсаторов
Классифицировать конденсаторы можно по нескольким группам. Так, в зависимости от возможности регулировать емкость их разделяют на постоянные, переменные и подстроечные. По своей форме они могут быть цилиндрическими, сферическими и плоскими. Можно делить их по назначению. Но самой распространенной классификацией является таковая по типу диэлектрика.
Бумажные конденсаторы
В качестве диэлектрика используется бумага, очень часто промасленная. Как правило, такие конденсаторы отличает большой размер, но были варианты и в небольшом исполнении, без промасливания. Используются в качестве стабилизирующих и накопительных устройств, а из бытовой электроники постепенно вытесняются более современными пленочными моделями.
При отсутствии промасливания имеют существенный недостаток — реагируют на влажность воздуха даже при герметичной упаковке. Промокшая бумага увеличивает энергопотери.
Диэлектрик в виде органических пленок
Пленки могут быть выполнены из органических полимеров, таких как:
- полиэтилентерифталат,
- полиамид,
- поликарбонат,
- полисульфон,
- полипропилен,
- полистирол,
- фторопласт (политетрафторэтилен).
По сравнению с предыдущими, такие конденсаторы имеют более компактные размеры, не увеличивают диэлектрические потери при увеличении влажности, но многие из них подвергаются риску выхода из строя при перегреве, а те, что этого недостатка лишены, отличаются более высокой стоимостью.
Твердый неорганический диэлектрик
Это может быть слюда, стекло и керамика.
Преимуществом этих конденсаторов считается их стабильность и линейность зависимости емкости от температуры, приложенного напряжения, а у некоторых — даже от радиации. Но иногда сама такая зависимость становится проблемой, и чем она менее выражена, тем дороже изделие.
Оксидный диэлектрик
С ним выпускаются алюминиевые, твердотельные и танталовые конденсаторы. Они имеют полярность, поэтому выходят из строя при неправильном подключении и превышении номинала напряжения. Но при этом они обладают хорошей емкостью, компактны и стабильны в работе. При правильной эксплуатации могут работать около 50 тыс. часов.
Вакуум
Такие устройства представляют собой стеклянную или керамическую колбу с двумя электродами, откуда выкачан воздух. В них практически отсутствуют потери, но малая емкость и хрупкость ограничивают сферу их применения радиостанциями, где величина емкости не так важна, а вот устойчивость к нагреву имеет принципиальное значение.
Двойной электрический слой
Если посмотреть, для чего нужен конденсатор, то можно понять, что этот тип — не совсем он. Скорее, это дополнительный или резервный источник питания, в качестве чего они и используются. Одни категория таких устройств — ионисторы — содержат в себе активированный уголь и слой электролита, другие работают на ионах лития. Емкость этих приборов может составлять до сотен фарад. К их недостаткам можно отнести высокую стоимость и активное сопротивление с токами утечки.
Подключение пускового и рабочего конденсаторов для трехфазного электромотора
Вот оно соответствие всех нужных приборов элементам схемы
Теперь выполним подключение, внимательно разобравшись с проводами
Так можно подключить двигатель и предварительно, используя неточную прикидку, и окончательно, когда будут подобраны оптимальные значения.
Подбор можно сделать и экспериментально, имея несколько конденсаторов разных емкостей. Если их присоединять параллельно друг другу, то суммарная емкость будет увеличиваться, при этом нужно смотреть, как ведет себя двигатель. Как только он станет работать ровно и без перенагрузки, значит, емкость находится где-то в районе оптимума. После этого приобретается конденсатор, по емкости равный этой сумме емкостей испытываемых конденсаторов, включенных параллельно. Однако можно при таком подборе измерять фактический потребляемый ток, используя измерительные токовые клещи, а провести расчет емкости конденсатора по формулам.
Как подобрать конденсатор
Конденсаторы для трехфазного двигателя нужны достаточно большой емкости — речь идет о десятках и сотнях микрофарад. Однако конденсаторы электролитические для этой цели не годятся. Они требуют подключения однополярного, то есть специально для них придется городить выпрямитель из диодов и сопротивлений. Кроме того, со временем в электролитических конденсаторах высыхает электролит и они теряют емкость. Поэтому если будете ставить такой на двигатель, необходимо делать на это скидку, а не верить тому, что на них написано. Ну и еще одно за ними числится: электролитические конденсаторы имеют свойство иногда взрываться.
Поэтому задачу, как выбрать конденсатор под трехфазный двигатель, часто решают в несколько этапов
Сначала подбираем приблизительно. Надо рассчитать емкость конденсатора по простейшему соотношению как 7 мкФ на каждые 100 ватт мощности. То есть 700 ватт дает нам 49 мкФ первоначально. Емкость выбираемого пускового конденсатора берется в диапазоне 1–3-кратного превышения емкости рабочего конденсатора. Выберите 2*50 = 100 мкФ — будет само то. Ну, для начала можно взять побольше, потом подобрать конденсаторы, ориентируясь на работу двигателя. От емкости конденсаторов зависит реальная мощность движка. Если ее мало, двигатель при тех же оборотах потеряет мощность (обороты не зависят от мощности, а только от частоты напряжения), так как ему будет не хватать тока. При чрезмерной емкости конденсаторов у него будет перегрев от избытка тока.
Нормальная работа двигателя, без шума и рывков — это неплохой критерий правильно выбранного конденсатора. Но для большей точности можно сделать расчет конденсаторов по формулам, а такую проверку оставить на потом в качестве окончательного подтверждения успешности результатов подбора конденсаторов.
Однако надо все-таки подключить конденсаторы.
Конденсатор
Чтобы экспериментально определить электроемкость проводника, как и его потенциал, нужно создать условия, исключающие влияние всех окружающих тел, которые, влияя па тело, изменяют его потенциал и электроемкость.
Это утверждение можно проверить опытом.
Укрепим на стержне электрометра металлический шар и сообщим ему определенный заряд. Стрелка прибора отклонится от положения равновесия и покажет определенное значение потенциала относительно земли.
Поднесем к шару металлическую пластину, соединенную проводником с землей (рис. 1.32).
Pиc. 132. Заземленная металлическая пластина влияет на электроемкость шара
Показания стрелки электрометра уменьшатся. Поскольку заряд шара в опыте не изменялся, то уменьшение потенциала свидетельствует об увеличении электроемкости шара. Изменение потенциала и соответственно электроемкости шара будет наблюдаться и в случае изменения расстояния между шаром и пластиной.
Таким образом, определяя электроемкость тела, необходимо учитывать также наличие окружающих тел. Поскольку на практике это сделать трудно, то применяют систему из двух или более проводников произвольной формы, разделенных диэлектриком. В этом случае электрические свойства такой системы проводников и диэлектрика не зависят от окружающих тел. Такую систему называют конденсатором. Простейшим для изучения и расчетов является конденсатор из двух металлических пластин, разделенных диэлектриком.
Электроемкость конденсатора, в отличие от обособленного тела, определяется по разности потенциалов между пластинами:
где Q — заряд одной пластины; (φl— φ2) и ∆φ — разность потенциалов между пластинами.
Слово конденсатор обозначает накопитель. В электричестве понимают как «накопитель электрических зарядов».
Пример:
Какую электроемкость имеет конденсатор, если на его обкладках накапливается заряд 50 нКл при разности потенциалов 2,5 кВ?
Дано:Q = 50 нКл,Аφ = 2,5 кВ. |
Решение |
С-? |
Подставим значения физических величин:
Ответ: электроемкость данного конденсатора 20 пФ.
Первый конденсатор был создан в 1745 г. голландским ученым Питером ван Мушенбруком, профессором Лейденского университета. Проводя опыты по электризации различных тел, он опустил проводник от кондуктора электрической машины в стеклянный графин с водой (рис. 1.33).
Питер ван Мушенбрук (1692-1781) — голландский физик; работы посвящены электричеству, теплоте, оптике; изобрел первый конденсатор — лейденскую банку и провел опыты с ней. |
Pиc. 133. Из истории открытия простейшего конденсатора лейденской банки
Случайно коснувшись пальцем этого проводника, ученый ощутил сильный электрический удар. В дальнейшем жидкость заменили металлическими проводниками, укрепленными на внутренней и внешней поверхностях банки. Такой конденсатор назвали лейденской банкой. В таком первозданном виде она использовалась в лабораториях более 200 лет.
Более совершенные конденсаторы применяются в современной электротехнике и радиоэлектронике. Их можно найти в преобразователях напряжения (адаптерах), питающих постоянным электрическим током электронные приборы, в радиоприемниках и радиопередатчиках как поставные части колебательных контуров. Они применяются практически во всех функциональных узлах электронной аппаратуры. В фотовспышках конденсаторы накапливают большие заряды, необходимые для действия вспышки.
В электротехнике конденсаторы обеспечивают необходимый режим работы электродвигателей, автоматических и релейных приборов, линий электропередач и т. п.
Во многих широкодиапазонных радиоприемниках конденсаторы переменной емкости (рис. 1.34) позволяют плавно изменять собственную частоту колебательного контура н процессе поиска передачи определенной радиостанции.
Рис. 134. Конденсатор переменной емкости с воздушным диэлектриком
Весьма распространены конденсаторы варикапы, электроемкость которых можно изменять электрическим способом. Конструктивно они весьма схожи с полупроводниковыми диодами.
Конденсаторы могут быть плоскими, трубчатыми, дисковыми. В качестве диэлектрика в них используют парафинированную бумагу, слюду, воздух, пластмассы, керамику (рис. 1.35).
Рис. 1.35. Различные типы конденсаторов
Искусственно созданные диэлектрические материалы позволяют создавать конденсаторы больших емкостей при небольших размерах.
Что такое конденсатор
Эта деталь содержит две металлических пластины, между которыми находится слой диэлектрика. Когда к пластинам подключают напряжение, на них накапливается заряд. Электрическое находится внутри конденсатора. Оно тем сильнее, чем больший заряд находится на пластинах.
Если отсоединить напряжение от пластин, то конденсатор начинает отдавать заряд. Если используется переменный ток, то полярность напряжения будет периодически меняться. При этом на пластинах будет попеременно то положительный, то отрицательный заряд.
Ёмкость конденсатора является его важнейшей характеристикой. Она характеризует то, сколько энергии он способен пропустить через себя. Её измеряют в фарадах. Поскольку речь идёт об очень большой величине, обычно применяются приставки, которые обозначают, насколько небольшая часть используется. Чаще всего используются микрофарады (такая единицы равны 0,000001 фарады).
Процедура подключения мотора Источник kabel-house.ru
Для каждого конденсатора существует номинальное напряжение. При нём эта деталь способна долго и надёжно работать. Обязательно указывается предельная величина наработки, которая выражается в количестве часов.
Существуют различные типы конденсаторов:
Полярные рассчитаны на использование в цепях постоянного тока
Важной особенностью является необходимость подключения в соответствии с указанной на них полярностью. Они обычно имеют небольшие размеры и относительно большую ёмкость.
Неполярные могут подключаться независимо от полярности
Их используют в цепях переменного тока. У них размеры больше, чем у полярных.
Электролитические. В них в качестве пластин используются листы фольги, а диэлектриком является тонкий слой окисла.
Для использования в качестве пускового конденсатора лучше всего подходят электролитические. Их часто используют при частоте переменного тока 50 Гц и напряжении 220-600 вольт. Конденсаторы могут иметь достаточно высокую ёмкость она может составлять сотни тысяч микрофарад.
Эти детали имеют высокую уязвимость к действию перегрева. При нарушении теплового режима они быстро выходят из строя. Неполярные конденсаторы не имеют этого недостатка, однако стоят в несколько раз дороже.
Однофазный асинхронный двигатель Источник asutpp.ru
При параллельном подключении ёмкости складываются. В том случае, когда её не хватает, для увеличения можно параллельно подключить дополнительную деталь. В этой ситуации нет необходимости заново собирать пусковую цепь.
Применяются также другие типы конденсаторов. Например, это могут быть вакуумные, жидкостные, газовые и другие. Однако в качестве пусковых конденсаторов их не используют.
Иногда тот конденсатор, который имеется в конструкции, не справляется с запуском. В таком случае его рекомендуется удалить, а вместо него поставить тот, который имеет большую ёмкость. Для маломощных двигателей допустимо, чтобы один конденсатор выполнял функции рабочего и пускового.
Использование полярных конденсаторов в условиях переменного напряжения возможно тогда, когда подключение выполнено через диод. Теперь полярность контактов изменяться не будет. Однако если диод будет неисправен, то деталь выйдет из строя.
Устройство асинхронного двигателя Источник elektrikexpert.ru
Процессы зарядки и разрядки конденсаторов.
С устройством мы разобрались, теперь разберемся, что произойдет, если подключить к конденсатору источник постоянного тока. На принципиальных электрических схемах конденсатор обозначают следующим образом:
Итак, мы подключили обкладки конденсатора к полюсам источника постоянного тока. Что же будет происходить?
Свободные электроны с первой обкладки конденсатора устремятся к положительному полюсу источника. Из-за этого на обкладке возникнет недостаток отрицательно заряженных частиц, и она станет положительно заряженной. В то же время электроны с отрицательного полюса источника тока переместятся ко второй обкладке конденсатора. В результате чего на ней возникнет избыток электронов, соответственно, обкладка станет отрицательно заряженной. Таким образом, на обкладках конденсатора образуются заряды разного знака (как раз этот случай мы и рассматривали в первой части статьи), что приводит к появлению электрического поля, которое создаст между пластинами конденсатора определенную разность потенциалов. Процесс зарядки будет продолжаться до тех пор, пока эта разность потенциалов не станет равна напряжению источника тока. После этого процесс зарядки закончится, и перемещение электронов по цепи прекратится.
При отключении от источника конденсатор может на протяжении длительного времени сохранять накопленные заряды. Соответственно, заряженный конденсатор является источником электрической энергии, это означает, что он может отдавать энергию во внешнюю цепь. Давайте создадим простейшую цепь, просто соединив обкладки конденсатора друг с другом:
В данном случае по цепи начнет протекать ток разряда конденсатора, а электроны начнут перемещаться с отрицательно заряженной обкладки к положительной. В результате напряжение на конденсаторе (разность потенциалов между обкладками) начнет уменьшаться. Этот процесс завершится в тот момент, когда заряды пластин конденсаторов станут равны друг другу, соответственно электрическое поле между обкладками пропадет и по цепи перестанет протекать ток. Вот так и происходит разряд конденсатора, в результате которого он отдает во внешнюю цепь всю накопленную энергию.
Как видите, здесь нет ничего сложного )
Немного теории
Конденсатор — пассивный электронный компонент, с переменной или постоянной величиной ёмкости, которое предназначено для накопления заряда и энергии электрического поля.
При выборе этих электронных компонентов руководствуются двумя основными характеристиками:
- Номинальная ёмкость измеряется в фарадах, но так как это очень большая величина, чаще всего применяют микрофарады. Номинальную величину этого параметра указывают на корпусе. Необходимо учитывать, что в зависимости от класса точности, отклонение действительной величины от номинальной может достигать ±20%, а иногда и более. Такие элементы подходят для большинства схем, поэтому при составлении батареи конденсаторов точного подбора ёмкости не требуется, достаточно уложиться в указанную погрешность.
- Номинальное напряжение измеряется в вольтах. Применение электронного компонента с номинальным напряжением, которое ниже чем в схеме, может привести к пробою диэлектрика и выходу элемента из строя. Поэтому эту величину необходимо выбирать с некоторым запасом.
Условное обозначение неполярного постоянного конденсатора на схеме, показано на рис. 1, а. Для полярного электронного компонента дополнительно отмечают положительный вывод — рис. 1, б.