Среднее значение эдс индукции по абсолютной величине меньше абсолютной величины эдс источника тока

Электродвижущая сила — Класс!ная физика

«Физика — 10 класс»

Любой источник тока характеризуется электродвижущей силой, или сокращённо ЭДС. Так, на круглой батарейке для карманного фонарика написано: 1,5 В. Что это значит?

Если соединить проводником два разноимённо заряженных шарика, то заряды быстро нейтрализуют друг друга, потенциалы шариков станут одинаковыми, и электрическое поле исчезнет (рис. 15.9, а).

Сторонние силы.

Для того чтобы ток был постоянным, надо поддерживать постоянное напряжение между шариками.

Для этого необходимо устройство (источник тока), которое перемещало бы заряды от одного шарика к другому в направлении, противоположном направлению сил, действующих на эти заряды со стороны электрического поля шариков.

В таком устройстве на заряды, кроме электрических сил, должны действовать силы неэлектростатического происхождения (рис. 15.9, б). Одно лишь электрическое поле заряженных частиц (кулоновское поле) не способно поддерживать постоянный ток в цепи.

Любые силы, действующие на электрически заряженные частицы, за исключением сил электростатического происхождения (т. е. кулоновских), называют сторонними силами.

Вывод о необходимости сторонних сил для поддержания постоянного тока в цепи станет ещё очевиднее, если обратиться к закону сохранения энергии.

Электростатическое поле потенциально. Работа этого поля при перемещении в нём заряженных частиц по замкнутой электрической цепи равна нулю. Прохождение же тока по проводникам сопровождается выделением энергии — проводник нагревается.

Следовательно, в цепи должен быть какой-то источник энергии, поставляющий её в цепь. В нём, помимо кулоновских сил, обязательно должны действовать сторонние, непотенциальные силы.

Работа этих сил вдоль замкнутого контура должна быть отлична от нуля.

Именно в процессе совершения работы этими силами заряженные частицы приобретают внутри источника тока энергию и отдают её затем проводникам электрической цепи.

Сторонние силы приводят в движение заряженные частицы внутри всех источников тока: в генераторах на электростанциях, в гальванических элементах, аккумуляторах и т. д.

При замыкании цепи создаётся электрическое поле во всех проводниках цепи. Внутри источника тока заряды движутся под действием сторонних сил против кулоновских сил (электроны от положительно заряженного электрода к отрицательному), а во внешней цепи их приводит в движение электрическое поле (см. рис. 15.9, б).

Природа сторонних сил.

Природа сторонних сил может быть разнообразной. В генераторах электростанций сторонние силы — это силы, действующие со стороны магнитного поля на электроны в движущемся проводнике.

В гальваническом элементе, например в элементе Вольта, действуют химические силы.

Элемент Вольта состоит из цинкового и медного электродов, помещённых в раствор серной кислоты. Химические силы вызывают растворение цинка в кислоте.

В раствор переходят положительно заряженные ионы цинка, а сам цинковый электрод при этом заряжается отрицательно. (Медь очень мало растворяется в серной кислоте.

) Между цинковым и медным электродами появляется разность потенциалов, которая и обусловливает ток во внешней электрической цепи.

Электродвижущая сила

Действие сторонних сил характеризуется важной физической величиной, называемой электродвижущей силой (сокращённо ЭДС).

Электродвижущая сила источника тока равна отношению работы сторонних сил при перемещении заряда по замкнутому контуру к абсолютной величине этого заряда:

Электродвижущую силу, как и напряжение, выражают в вольтах.

Разность потенциалов на клеммах батареи при разомкнутой цепи равна электродвижущей силе. ЭДС одного элемента батареи обычно 1—2 В.

Можно говорить также об электродвижущей силе и на любом участке цепи. Это удельная работа сторонних сил (работа по перемещению единичного заряда) не во всём контуре, а только на данном участке.

Следующая страница «Закон Ома для полной цепи» Назад в раздел «Физика — 10 класс, учебник Мякишев, Буховцев, Сотский»

Законы постоянного тока — Физика, учебник для 10 класса — Класс!ная физика

Электрический ток. Сила тока — Закон Ома для участка цепи. Сопротивление — Электрические цепи. Последовательное и параллельное соединения проводников — Примеры решения задач по теме «Закон Ома.

Последовательное и параллельное соединения проводников» — Работа и мощность постоянного тока — Электродвижущая сила — Закон Ома для полной цепи — Примеры решения задач по теме «Работа и мощность постоянного тока.

Закон Ома для полной цепи»

Графики зависимости индукционного тока от времени рамка

. одновременно в одну или в противоположные стороны. Укажите, как это можно осуществить.

При раскачивании первой катушки в ней возникает индукционный ток, который проходит по виткам второй катушки, находящейся в магнитном поле, и раскачивает ее. Направление движения второй катушки зависит от направления тока в ней и расположения полюсов магнита.

  • 1
  • 2
  • 3
  • 4
  • 5

Она также будет раскачиваться, но в стороны, противоположные направлению отклонения стрелки первого гальванометра.

  • 1
  • 2
  • 3
  • 4
  • 5

См. рисунок 355.

  • 1
  • 2
  • 3
  • 4
  • 5

При сближении цепей ток направлен от С к D; при удалении — от D к С.

  • 1
  • 2
  • 3
  • 4
  • 5

Не будет, так как не изменяется поток магнитной индукции, пронизывающий рамку.

  • 1
  • 2
  • 3
  • 4
  • 5

. наибольшая и наименьшая ЭДС. Индукцией магнитного поля Земли пренебречь.

ЭДС будет иметь наименьшее значение, когда рамка будет расположена в плоскости, проходящей через прямолинейный провод. Наибольшая ЭДС будет возникать тогда, когда рамка будет перпендикулярна к этой плоскости.

  • 1
  • 2
  • 3
  • 4
  • 5

Нет. Магнитное поле индукционного тока противодействует перемещению проводника. Энергия сторонних сил, затраченная на выполнение работы по преодолению этого сопротивления, и обращается в энергию электрического тока. Причины размагничивания постоянных магнитов, например, в электрических машинах — тепловое движение молекул и механические толчки.

  • 1
  • 2
  • 3
  • 4
  • 5

Ток будет направлен от ртути к оси диска.

  • 1
  • 2
  • 3
  • 4
  • 5

. В каком месте диска — в центре или на окружности — потенциал будет больше?

В северном полушарии — на окружности, в южном — в центре.

  • 1
  • 2
  • 3
  • 4
  • 5


От А к В и от D к С.

  • 1
  • 2
  • 3
  • 4
  • 5

ЭДС будет возникать, так как при внесении провода в пространство между полюсами магнита будет изменяться магнитный поток, пронизывающий площадь контура.

  • 1
  • 2
  • 3
  • 4
  • 5
  • 1
  • 2
  • 3
  • 4
  • 5

Магнитный поток не меняется, он остается равным нулю. В кольце индуцируется ток, магнитный поток которого таков, что в сумме с потоком индукции самого магнита через кольцо дает нуль.

  • 1
  • 2
  • 3
  • 4
  • 5
  • 1
  • 2
  • 3
  • 4
  • 5

За счет какой энергии происходит нагревание цилиндра и воды?

Нагревание воды вызвано токами Фуко, возникающими в стенках цилиндра при его вращении в магнитном поле. Действие поля на стенки цилиндра тормозит его вращение. При наличии поля необходимо приложить к цилиндру больший вращающий момент, т. е. затратить большую энергию, чем при отсутствии поля. Эта дополнительная энергия и расходуется на нагревание цилиндра и воды.

  • 1
  • 2
  • 3
  • 4
  • 5

но это опасно для стеклянного баллона лампы. Каким способом можно нагреть электроды лампы, не нагревая баллона?

Токами высокой частоты.

  • 1
  • 2
  • 3
  • 4
  • 5

Качающаяся стрелка создает переменное магнитное поле, индуцирующее в медном футляре вихревые токи, направление которых согласно правилу Ленца таково, что они препятствуют движению стрелки.

  • 1
  • 2
  • 3
  • 4
  • 5

При замене медного диска стеклянным или деревянным магнит оставался неподвижным. Магнит также оставался неподвижным, когда в медном диске были сделаны разрезы по направлению его радиусов. Когда разрезы были запаяны, магнит опять приходил в движение. Объясните эти опыты.

При вращении диска в нем возникали вихревые токи, направленные так, что поле магнита тормозит вращение диска. По третьему закону Ньютона равная и противоположно направленная сила действует на магнит и заставляет его вращаться вслед за диском. Если в диске сделать радиальные разрезы, то в нем индуцируются небольшие вихревые токи, оказывающие слабое действие на магнит.

  • 1
  • 2
  • 3
  • 4
  • 5

Энергия колебаний в значительной степени расходуется на возбуждение вихревых токов в алюминиевом каркасе катушки и в цепи самой замкнутой катушки прибора.

  • 1
  • 2
  • 3
  • 4
  • 5


. от времени, чтобы прибор отвечал своему назначению?

Силы, действующие на металлические опилки, возникают вследствие появления в опилках индукционных токов при изменении магнитного поля электромагнита. При нарастании тока в электромагните опилки в соответствии с правилом Ленца будут выталкиваться из поля, а при убывании тока — притягиваться. Эти силы пропорциональны скорости изменения магнитного поля и соответственно тока. Поэтому ток в электромагните должен медленно нарастать, а затем очень быстро падать до нуля. Примерная зависимость силы тока от времени изображена на рисунке 356.

Источник



ЭДС в быту и единицы измерения

Другие примеры встречаются в практической жизни любого рядового человека. Под эту категорию попадают такие привычные вещи, как малогабаритные батарейки, а также другие миниатюрные элементы питания. В этом случае рабочая ЭДС формируется за счет химических процессов, протекающих внутри источников постоянного напряжения. Когда оно возникает на клеммах (полюсах) батареи вследствие внутренних изменений – элемент полностью готов к работе. Со временем величина ЭДС несколько снижается, а внутреннее сопротивление заметно возрастает.

В результате если вы измеряете напряжение на не подключенной ни к чему пальчиковой батарейке вы видите нормальные для неё 1.5В (или около того), но когда к батарейке подключается нагрузка, допустим, вы установили её в какой-то прибор — он не работает. Почему? Потому что если предположить, что у вольтметра внутреннее сопротивление во много раз выше, чем внутреннее сопротивлении батарейки — то вы измеряли её ЭДС. Когда батарейка начала отдавать ток в нагрузке на её выводах стало не 1.5В, а, допустим, 1.2В — прибору недостаточно ни напряжения, ни тока для нормальной работы.


Расчет ЭДС.

Как раз вот эти 0.3 В и упали на внутреннем сопротивлении гальванического элемента. Если батарейка совсем старая и её электроды разрушены, то на клеммах батареи может не быть вообще никакой электродвижущей силы или напряжения — т.е. ноль. Совсем небольшая по величине электродвижущая сила наводится и в рамках антенны приемника, которая усиливается затем специальными каскадами, и мы получаем наш телевизионный, радио и даже Wi-Fi сигнал.

Закон Фарадея

Явление электромагнитной индукции определяется появлением электрического тока в электрически проводящей замкнутой цепи при изменении магнитного потока через область этой цепи.

Основной закон Фарадея состоит в том, что электродвижущая сила (ЭДС) прямо пропорциональна скорости изменения магнитного потока.

Формула закона электромагнитной индукции Фарадея выглядит следующим образом:

Рис. 2. Формула закона электромагнитной индукции

И если сама формула, основанная на приведенных выше пояснениях, вопросов не вызывает, то знак «-» может вызвать сомнения. Оказывается, существует правило Ленца, русского ученого, проводившего свои исследования на основе постулатов Фарадея. Согласно Ленцу, знак «-» указывает направление возникающей ЭДС, то есть индукционный ток направлен таким образом, что магнитный поток, который он создает через область, ограниченную цепью, стремится предотвратить изменение потока, которое вызывает такой ток.

Основные понятия и законы электростатики

Закон Кулона:
сила взаимодействия двух неподвижных точечных зарядов в вакууме прямо пропорциональна произведению модулей заряда и обратно пропорциональна квадрату их расстояния:

Коэффициент пропорциональности в этом законе

В SI коэффициент k записывается как

Потенциал электрического поля – это отношение потенциальной энергии заряда в поле к этому заряду:

Проекция напряженности электрического поля на ось и потенциал связаны соотношением

Электрическая емкость тела называется величиной отношения

Основные понятия и законы постоянного тока

Электрический ток – это прямое движение электрических зарядов. В разных веществах переносчиками заряда выступают элементарные частицы разного знака. Направление движения положительных зарядов считается положительным направлением тока. Электрический ток количественно характеризуется его силой. Это заряд, прошедший за единицу времени через поперечное сечение проводника:

Закон Ома для участка цепи:

R
ρ

При параллельном подключении сопротивление, обратное сопротивлению, равно сумме обратных сопротивлений:

где t – время, I – сила тока, U – разность потенциалов, q – прошедший заряд.
Закон Джоуля-Ленца:

Основные понятия и законы магнитостатики

Характеристикой магнитного поля является магнитная индукция ➛B. Поскольку это вектор, необходимо определить как направление этого вектора, так и его величину. Направление вектора магнитной индукции связано с ориентационным действием магнитного поля на магнитную стрелку. Направление вектора магнитной индукции берется от южного полюса S к северному полюсу N магнитной стрелки, которая свободно установлена ​​в магнитном поле.
Направление вектора магнитной индукции прямого проводника с токами можно определить с помощью правила подвеса:
если направление поступательного перемещения кардана совпадает с направлением тока в проводнике, то направление вращения ручки карданного подвеса совпадает с направлением вектора магнитной индукции.
Величина вектора магнитной индукции – это отношение максимальной силы, действующей со стороны магнитного поля на участок проводника с током, к произведению силы тока на длину этого участка:

Основные понятия и законы электромагнитной индукции

Если через замкнутую проводящую цепь проникает переменный магнитный поток, в этой цепи возникают ЭДС и электрический ток. Эта ЭДС называется ЭДС электромагнитной индукции, а ток – индукцией. Явление их возникновения называется электромагнитной индукцией. ЭДС индукции можно рассчитать по основному закону электромагнитной индукции или по закону Фарадея:

Электромагнитные колебания и волны

Колебательный контур – это электрическая цепь, состоящая из последовательно включенных конденсатора с емкостью C и катушки с индуктивностью L (см. Рис. 7).

Для незатухающих свободных колебаний в контуре циклическая частота определяется по формуле

Период свободных колебаний в контуре определяется формулой Томсона:

Ток, протекающий через катушку индуктивности, не совпадает по фазе с напряжением на 1/2 или четверть периода. Напряжение опережает ток на тот же фазовый угол.

Трансформатор – это устройство, предназначенное для преобразования переменного тока. Трансформатор состоит из замкнутого стального сердечника, на котором установлены две катушки. Катушка, которая подключается к источнику переменного напряжения, называется первичной обмоткой, а катушка, которая подключается к потребителю, называется вторичной обмоткой. Отношение напряжения на первичной обмотке к вторичной обмотке трансформатора равно отношению количества витков в этих обмотках:

Приложения

Принципы электромагнитной индукции применяются во многих устройствах и системах, в том числе:

  • Токовые клещи
  • Электрические генераторы
  • Электромагнитное формование
  • Графический планшет
  • эффект Холла метры
  • Индукционная готовка
  • Асинхронные двигатели
  • Индукционное уплотнение
  • Индукционная сварка
  • Индуктивная зарядка
  • Индукторы
  • Магнитные расходомеры
  • Фонарик с механическим приводом
  • Пикапы
  • Кольцо Rowland
  • Транскраниальная магнитная стимуляция
  • Трансформеры
  • Беспроводная передача энергии

Электрический генератор

Прямоугольная проволочная петля, вращающаяся с угловой скоростью ω в направленном радиально наружу магнитном поле B фиксированной величины. Цепь замыкается щетками, скользящими по контактам с верхним и нижним дисками, имеющими токопроводящие обода. Это упрощенная версия барабанный генератор.

ЭДС, создаваемая законом индукции Фарадея из-за относительного движения цепи и магнитного поля, является явлением, лежащим в основе электрические генераторы. Когда постоянный магнит перемещается относительно проводника, или наоборот, создается электродвижущая сила. Если провод подключен через электрическая нагрузка, ток будет течь, и, следовательно, электроэнергия генерируется, преобразуя механическую энергию движения в электрическую. Например, барабанный генератор основан на рисунке справа внизу. Другая реализация этой идеи — это Диск Фарадея, показанный в упрощенном виде справа.

В примере с диском Фарадея диск вращается в однородном магнитном поле, перпендикулярном диску, заставляя ток течь в радиальном плече из-за силы Лоренца. Чтобы управлять этим током, необходима механическая работа. Когда генерируемый ток течет через проводящий обод, магнитное поле создается этим током через Обходной закон Ампера (помечено на рисунке как «индуцированный B»). Обод, таким образом, становится электромагнит который сопротивляется вращению диска (пример Закон Ленца). На дальней стороне рисунка обратный ток течет от вращающегося рычага через дальнюю сторону обода к нижней щетке. B-поле, индуцированное этим обратным током, противостоит приложенному B-полю, стремясь к уменьшение поток через ту сторону цепи, противодействующий увеличение в потоке из-за вращения. На ближней стороне рисунка обратный ток течет от вращающегося рычага через ближнюю сторону обода к нижней щетке. Индуцированное B-поле увеличивается поток на этой стороне цепи, противодействующий уменьшение в потоке из-за вращения. Энергия, необходимая для поддержания движения диска, несмотря на эту реактивную силу, в точности равна произведенной электрической энергии (плюс энергия, потраченная впустую из-за трение, Джоулевое нагревание, и другие недостатки). Такое поведение характерно для всех генераторов, преобразующих механическая энергия к электрической энергии.

Электрический трансформатор

Когда электрический ток в петле из проволоки изменяется, изменяющийся ток создает изменяющееся магнитное поле. Второй провод, находящийся в зоне действия этого магнитного поля, будет испытывать это изменение магнитного поля как изменение связанного магнитного потока, d ΦB / д т. Следовательно, электродвижущая сила создается во втором контуре, называемом наведенной ЭДС или ЭДС трансформатора. Если два конца этого контура соединить через электрическую нагрузку, ток будет течь.

Токовые клещи

Токовые клещи

Токовые клещи — это тип трансформатора с разъемным сердечником, который можно раздвинуть и закрепить на проводе или катушке для измерения тока в нем или, наоборот, для создания напряжения. В отличие от обычных инструментов, зажим не имеет электрического контакта с проводником и не требует его отключения во время крепления зажима.

Магнитный расходомер

Закон Фарадея используется для измерения расхода электропроводных жидкостей и шламов. Такие приборы называются магнитными расходомерами. Индуцированное напряжение ℇ, создаваемое в магнитном поле B из-за проводящей жидкости, движущейся со скоростью v таким образом дается:

E=−Bℓv,{ displaystyle { mathcal {E}} = — B ell v,}

где ℓ — расстояние между электродами в магнитном расходомере.

Явление электромагнитной индукции

Электромагнитная индукция – явление возникновения тока в замкнутом проводящем контуре при изменении магнитного потока, пронизывающего его.

Явление электромагнитной индукции было открыто М. Фарадеем.

Опыты Фарадея

  • На одну непроводящую основу были намотаны две катушки: витки первой катушки были расположены между витками второй. Витки одной катушки были замкнуты на гальванометр, а второй – подключены к источнику тока. При замыкании ключа и протекании тока по второй катушке в первой возникал импульс тока. При размыкании ключа также наблюдался импульс тока, но ток через гальванометр тек в противоположном направлении.
  • Первая катушка была подключена к источнику тока, вторая, подключенная к гальванометру, перемещалась относительно нее. При приближении или удалении катушки фиксировался ток.
  • Катушка замкнута на гальванометр, а магнит движется – вдвигается (выдвигается) – относительно катушки.

Опыты показали, что индукционный ток возникает только при изменении линий магнитной индукции. Направление тока будет различно при увеличении числа линий и при их уменьшении.

Сила индукционного тока зависит от скорости изменения магнитного потока. Может изменяться само поле, или контур может перемещаться в неоднородном магнитном поле.

Объяснения возникновения индукционного тока

Ток в цепи может существовать, когда на свободные заряды действуют сторонние силы. Работа этих сил по перемещению единичного положительного заряда вдоль замкнутого контура равна ЭДС. Значит, при изменении числа магнитных линий через поверхность, ограниченную контуром, в нем появляется ЭДС, которую называют ЭДС индукции.

Электроны в неподвижном проводнике могут приводиться в движение только электрическим полем. Это электрическое поле порождается изменяющимся во времени магнитным полем. Его называют вихревым электрическим полем. Представление о вихревом электрическом поле было введено в физику великим английским физиком Дж. Максвеллом в 1861 году.

Свойства вихревого электрического поля:

  • источник – переменное магнитное поле;
  • обнаруживается по действию на заряд;
  • не является потенциальным;
  • линии поля замкнутые.

Работа этого поля при перемещении единичного положительного заряда по замкнутому контуру равна ЭДС индукции в неподвижном проводнике.

Природа ЭДС

Причина возникновения ЭДС в разных источниках тока разная. По природе возникновения различают следующие типы:

  • Химическая ЭДС. Возникает в батарейках и аккумуляторах вследствие химических реакций.
  • Термо ЭДС. Возникает, когда находящиеся при разных температурах контакты разнородных проводников соединены.
  • ЭДС индукции. Возникает в генераторе при помещении вращающегося проводника в магнитное поле. ЭДС будет наводиться в проводнике, когда проводник пересекает силовые линии постоянного магнитного поля или когда магнитное поле изменяется по величине.
  • Фотоэлектрическая ЭДС. Возникновению этой ЭДС способствует явление внешнего или внутреннего фотоэффекта.
  • Пьезоэлектрическая ЭДС. ЭДС возникает при растяжении или сдавливании веществ.

Будет интересно Что такое индуктивность

Электромагнитная индукция (самоиндукция)

Начнем с электромагнитной индукции. Это явление описывает закон электромагнитной индукции Фарадея. Физический смысл этого явления состоит в способности электромагнитного поля наводить ЭДС в находящемся рядом проводнике. При этом или поле должно изменяться, например, по величине и направлению векторов, или перемещаться относительно проводника, или должен двигаться проводник относительно этого поля. На концах проводника в этом случае возникает разность потенциалов.

Опыт демонстрирует появление ЭДС в катушке при воздействии изменяющегося магнитного поля постоянного магнита. Есть и другое похожее по смыслу явление — взаимоиндукция. Оно заключается в том, что изменение направления и силы тока одной катушки индуцирует ЭДС на выводах расположенной рядом катушки, широко применяется в различных областях техники, включая электрику и электронику. Оно лежит в основе работы трансформаторов, где магнитный поток одной обмотки наводит ток и напряжение во второй.


Что такое самоиндукция.

В электрике физический эффект под названием ЭДС используется при изготовлении специальных преобразователей переменного тока, обеспечивающих получение нужных значений действующих величин (тока и напряжения). Благодаря явлениям индукции и самоиндукции инженерам удалось разработать множество электротехнических устройств: от обычной катушки индуктивности (дросселя) и вплоть до трансформатора. Понятие взаимоиндукции касается только переменного тока, при протекании которого в контуре или проводнике меняется магнитный поток.


Таблица параметров электродвижущей силы индукции.

Закон Фарадея-Максвелла

В 1873 г. Дж. Максвелл переформулировал теорию электромагнитного поля. Выведенные из него уравнения легли в основу современной радиотехники и электротехники. Они выражаются следующим образом:

  • Edl = -dФ / dt – уравнение электродвижущей силы
  • Hdl = -dN / dt – уравнение магнитодвижущей силы.

Где E – напряженность электрического поля в зоне dl; H – напряженность магнитного поля в области dl; N – поток электрической индукции, t – время.

Симметричный характер этих уравнений устанавливает связь между электрическими и магнитными явлениями, магнитными с электрическими явлениями, физический смысл, с которым определяются эти уравнения, может быть выражен следующими положениями:

  • если электрическое поле изменяется, то это изменение всегда сопровождается магнитным полем.
  • если магнитное поле изменяется, то это изменение всегда сопровождается электрическим полем.

Рис. 3. Возникновение вихревого магнитного поля

Максвелл также обнаружил, что распространение электромагнитного поля равно скорости распространения света.

ЭДС

ЭДС расшифровывается как электродвижущая сила или физическое значение, которое характеризует работу посторонних сил в блоках неизменного либо переменного токов.

При закрытом проводном контуре равняется действию работы данных сил при перемещении одиночного заряда с плюсовым значением, по всему контуру.

Обозначая напряжение поля посторонних сил с помощью электродвижущей силы, получается что эдс неизвестна в закрытом контуре L равняется.

Допустимые силы электростатического поля постоянно не смогут держать одно напряжение в цепи, потому что работая по закрытому пути, данные силы равны нулю. А когда ток проходит через проводники, то данную работу сопровождает выделение энергии и нагревание проводников.

Посторонние силы заставляют двигаться заряженные частицы в генераторе, гальванических элементах, аккумуляторах и всевозможных источниках. При чем возникновение посторонних сил различное.

К примеру: В генераторе используются от вихревого электрического поля, которые возникают от изменения магнитного поля; У гальванических элементов и аккумуляторов используются химические силы.

Эдс источника тока зависит от напряжения в местах зажимов если цепь разомкнута. По закону Ома сила тока цепи с заданным сопротивлением также находит эдс. Единица измерения Вольт.

Эдс индукции это своего рода явление которое обусловлено изменением магнитного поля в замкнутом пространстве. Находится по формуле:

в которой: Ф — магнитное поле в закрытом пространстве S, закрытую контуром. При этом знак минус служит для неизменности магнитного поля благодаря индукции электродвижущей силы.

Электродвижущая сила это описание закрытого контура, невозможно точно показать её точку пребывания. Но практически всегда эдс считают приблизительно сосредоточенной в некоторых устройствах либо элементов цепи. При этом её называют описанием данного устройства, определяя как потенциальную разность в его разомкнутых полюсах.

Такие устройства разделяют на несколько видов зависящих от типа преобразования:

— Химические — это аккумуляторы, ванны, гальванические батареи;
— Электромагнитные — это электродвижущая сила электромагнитной индукции, которая бывает в трансформаторах, динамо-машинах, электромоторах, дросселях; — Фотоэлектрические — это внешние или внутренние фотоэффекты;
— Электростатические — это возникающее напряжение в механическом трении электрофорных машин или как пример грозовые облака.
— Пьезоэлектрические — это сдавливание либо растяжение пьезэлектрических датчиков.
Так же существуют термоионные и термоэлектрические эдс.

Что такое ЭДС: объяснение простыми словами

Под ЭДС понимается удельная работа сторонних сил по перемещению единичного заряда в контуре электрической цепи. Это понятие в электричестве предполагает множество физических толкований, относящихся к различным областям технических знаний. В электротехнике — это удельная работа сторонних сил, появляющаяся в индуктивных обмотках при наведении в них переменного поля. В химии она означает разность потенциалов, возникающее при электролизе, а также при реакциях, сопровождающихся разделением электрических зарядов.

Что такое фоторезистор.

Читать далее

Маркировка SMD транзисторов.

Читать далее

Как сделать датчик движения своими руками.

Читать далее

В физике она соответствует электродвижущей силе, создаваемой на концах электрической термопары, например. Чтобы объяснить суть ЭДС простыми словами – потребуется рассмотреть каждый из вариантов ее трактовки. Прежде чем перейти к основной части статьи отметим, что ЭДС и напряжение очень близкие по смыслу понятия, но всё же несколько отличаются. Если сказать кратко, то ЭДС — на источнике питания без нагрузки, а когда к нему подключают нагрузку — это уже напряжение. Потому что количество вольт на ИП под нагрузкой почти всегда несколько меньше, чем без неё. Это связано с наличием внутреннего сопротивления таких источников питания, как трансформаторы и гальванические элементы.

Электродвижущая сила (эдс), физическая величина, характеризующая действие сторонних (непотенциальных) сил в источниках постоянного или переменного тока; в замкнутом проводящем контуре равна работе этих сил по перемещению единичного положительного заряда вдоль контура. Если через Eстр обозначить напряжённость поля сторонних сил, то эдс в замкнутом контуре (L) равна , где dl — элемент длины контура. Потенциальные силы электростатического (или стационарного) поля не могут поддерживать постоянный ток в цепи, т. к. работа этих сил на замкнутом пути равна нулю. Прохождение же тока по проводникам сопровождается выделением энергии — нагреванием проводников.

Сторонние силы приводят в движение заряженные частицы внутри источников тока: генераторов, гальванических элементов, аккумуляторов и т. д. Происхождение сторонних сил может быть различным. В генераторах сторонние силы — это силы со стороны вихревого электрического поля, возникающего при изменении магнитного поля со временем, или Лоренца сила, действующая со стороны магнитного поля на электроны в движущемся проводнике; в гальванических элементах и аккумуляторах — это химические силы и т. д. Эдс определяет силу тока в цепи при заданном её сопротивлении (см. Ома закон). Измеряется эдс, как и напряжение, в вольтах.


Что такое ЭДС.

Способы расчёта

Есть несколько основных способов определения индуктивности катушки. Все формулы, которые будут использоваться при расчетах, легко найти в справочниках или в Интернете. Весь процесс расчета довольно прост и не составит труда для людей с базовыми математическими и физическими знаниями.

Через силу тока

Этот расчет считается самым простым способом определения индуктивности катушки. Формула силы тока исходит из самого термина. Какая индуктивность катушки – можно определить по формуле: L = Ф / I, где:

  • L – индуктивность цепи (в генри);
  • это величина магнитного потока, измеренная по Веберу;
  • I – ток в катушке (в амперах).

Соленоид конечной длины

Соленоид представляет собой длинную и тонкую катушку, у которой толщина намотки намного меньше диаметра. В этом случае расчеты производятся по той же формуле, что и сила тока, только величина магнитного потока будет определяться следующим образом: Ф = µ0NS / l, где:

  • µ0 – магнитная проницаемость среды, определяемая по справочным таблицам (для воздуха, которое является значением по умолчанию в большинстве расчетов, оно равно 0,00000126 генри / метр);
  • N – количество витков катушки;
  • S – площадь поперечного сечения змеевика, измеренная в квадратных метрах;
  • l – длина соленоида в метрах.

Коэффициент самоиндукции соленоида также можно рассчитать согласно способу определения энергии магнитного потока поля. Это более простой вариант, но он требует некоторых значений. Формула для определения индуктивности: L = 2W / I 2, где:

  • W – энергия магнитного потока, измеренная в джоулях;
  • I – ток в амперах.

Катушка с тороидальным сердечником

В большинстве случаев тороидальная катушка наматывается на сердечник из материала с высокой магнитной проницаемостью. В этом случае для расчета индуктивности можно использовать формулу прямого соленоида бесконечной длины. Он имеет следующий вид: L = N µ0 µS / 2 πr, где:

  • N – количество витков катушки;
  • µ – относительная магнитная проницаемость;
  • µ0 – магнитная постоянная;
  • S – площадь поперечного сечения сердечника;
  • – математическая константа, равная 3,14;
  • r – средний радиус тора.

Длинный проводник

Большинство этих квазилинейных проводников имеют круглое поперечное сечение. В этом случае значение коэффициента самоиндукции будет определяться по стандартной формуле для приближенных расчетов: L = µ0l (µelnl / r + µi / 4) / 2 π. Здесь используются следующие условные обозначения:

  • l – длина жилы в метрах;
  • r – радиус сечения провода, измеряемый в метрах;
  • µ0 – магнитная постоянная;
  • µi – характеристика относительной магнитной проницаемости материала, из которого сделан проводник;
  • µe – относительная магнитная проницаемость внешней среды (чаще всего для вакуума берется значение, равное 1);
  • это число пи;
  • ln – обозначение логарифма.

Теги: ампер, аппликация, карданный вал, взгляд, повреждение, генератор, двигатель, дом, знак, измерение, как, компьютер, конструкция, цепь, магнит, магнитный, пар, постоянный, потенциал, правило, принцип, провод, работа, размер, поток, самоиндукция, сопротивление, цепь, десять, ток, трансформатор, эффект

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Электрика
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: