Виды напряжений
В случае одноосного растяжения возникающие в теле напряжения равны. Сила Р, (рис. 7) приложенная к некоторой площадке F, обычно направлена к ней под некоторым углом. Поэтому в теле возникают нормальные и касательные напряжения.
Образование внутренних напряжений связано в основном с неоднородным распределением деформаций (в том числе и микродеформаций) по объему тела.
Наличие в испытуемом образце механических надрезов, трещин внутренних дефектов металла приводит к неравномерному распределению напряжений, создавая у основания надреза пиковую концентрацию нормальных напряжений (нормальные напряжения бывают растягивающими и сжимающими) (см. рис. 7). Действие надрезов, сделанных в образце, аналогично конфигурации изделий, имеющих сквозные отверстия, резьбу и т.п., или влиянию внутренних дефектов металла (неметаллических включений, графитных выделений в чугуне, трещин и др.), нарушающих его цельность. Поэтому всевозможные надрезы, отверстия, галтели и другие источники концентрации напряжений называют концентраторами напряжений.
Напряжения вызываются различными причинами.Различают временные,обусловленные действием внешней нагрузки и исчезающие после ее снятия, и внутренние остаточные напряжения, возникающие и уравновешивающиеся в пределах тела без действия внешней нагрузки.
Внутренние напряжения наиболее часто возникают в процессе быстрого нагрева или охлаждения металла вследствие неодинакового расширения (сжатия) поверхностных и внутренних слоев. Эти напряжения называют тепловыми.
Кроме того, напряжения возникают в процессе кристаллизации, при неравномерной деформации, при термической обработке вследствие структурных превращений по объему и т.д., эти напряжения называют фазовыми или структурными.
Внутренние напряжения классифицируют на:
Напряжения 1 рода (или зональные), называемые также макронапряжениями, они уравновешиваются в объеме всего тела, возникают главным образом в результате технологических процессов, которым подвергают деталь в процессе ее изготовления.
Напряжения 2 рода уравновешиваются в объеме зерна (кристаллита) или нескольких блоков (субзерен), их называют иначе микронапряжениями. Чаще всего они возникают в процессе фазовых превращений и деформации металла, когда разные кристаллиты и блоки внутри них оказываются в различном упругонапряженном состоянии.
Напряжения 3 рода, локализующиеся в объемах кристаллической ячейки, представляют собой статические искажения решетки, т. е. смещения атомов на доли ангстрема из узлов кристаллической решетки.
Что такое электрическое сопротивление тела человека
Сопротивление тела человека – способность различных тканей, внутренних органов противостоять протеканию электрического тока. Как и в проводниках, суть данного явления заключается в том, что проходящий по материи поток свободных электронов сталкивается с атомами и молекулами вещества, снижает свою скорость и плотность. Следствие таких происходящих на молекулярном уровне процессов – снижение силы проходящего по тканям, внутренним органам организма тока, что существенно уменьшает причиняемый потоком электронов вред.
Измеряется данная характеристика в таких единицах, как кило и мегаомы (сокращенно кОм, мОм, соответственно).
На заметку. Чтобы узнать, какое у тела человека значение сопротивления в омах, используют такой прибор, как мультиметр. Процесс измерения достаточно прост и безопасен: ручку переключения диапазонов устанавливают в положение для измерения сопротивления до 2000 кОм («2000к»), зажимают кончик каждого щупа между указательным и большим пальцами левой и правой руки. Появляющееся через 2-3 секунды на дисплее значение фиксируют при помощи кнопки «hold»(«удержать»).
Мультиметр для измерения сопротивления человеческого тела
Электрическое сопротивление человеческого тела складывается из отдельных значений данной характеристики для таких тканей и органов, как:
- Кожа;
- Подкожная жировая прослойка;
- Кровеносные сосуды;
- Кровь и лимфа;
- Костная и хрящевая ткань;
- Мышцы;
- Костный мозг;
- Органы различных систем организма (пищеварительной, дыхательной, сердечно-сосудистой и т.д.).
Самое большое сопротивление имеет кожа, точнее эпидермис – состоящий из ороговевших клеток внешний слой. Содержащий мало жидкости он очень слабо проводит ток. Расположенный под эпидермисом внутренний слой кожи, называемый дермой, имеет электропроводность значительно больше, чем наружные ороговевшие клетки.
Сопротивляемость содержащих много жидкости крови, лимфы, костного мозга, а также различных внутренних органов самая низкая. Промежуточное положение по величине данной характеристики занимает костная и хрящевая ткань.
Важно! Принято считать, что электрическое сопротивление человеческого тела переменному однофазному бытовому току должно быть равным 1 кОм. При воздействии постоянного 20-24-х вольтного тока величина данной характеристики должна составлять от 3 до 100 кОм
На данных нормативах основан расчет максимально безопасной силы – количества электронов, проходящих через ткани человеческого организма за единицу времени без причинения ему вреда.
Приемники, источники:
Если к схеме добавить узел стабилизации, построенный по схеме параметрического стабилизатора , напряжение блока питания будет стабилизировано. На изображении с распиновкой должно быть четко видно: с какой стороны считать ножки, где находится ключ, срез или метка, чтобы вы правильно определили необходимый вывод. Этого можно достичь, перенося свободные электроны с положительного тела на отрицательное так, чтобы заряды тел не менялись со временем.
Режимы работы Различные элементы, соединенные проводниками электрического тока между собой, образуют электрические цепи.
Направленное движение электронов в проводнике Если вдоль проводника действует напряжение, то внутри проводника возникает электрическое поле. Дополнительно по теме.
Режим короткого замыкания В этом режиме ключ SA в схеме электрической цепи рис.
Транзисторы — это управляемые ключи, вы можете закрыть их и открыть, а если нужно открыть не полностью. Динисторы — разновидность тиристора, без управляющего электрода, а открываются они, подобно стабилитронам, по преодолению определенного уровня напряжения.
Это участок цепи с током одинаковой величины. Схема замещения пассивного двухполюсника П представляется в виде его входного сопротивления. Метод эквивалентных преобразований. Как находить токи и напряжения в цепи
Читайте дополнительно: Измерение петли фаза нуль
Что такое ЭДС
Что, на ваш взгляд, такое ЭДС? Я вам сейчас говорю!
Электродвижущая сила (ЭДС) также измеряется в вольтах, как и напряжение.
Берем прибор, измеряющий вольты (вольтметр), аккумулятор и производим замер.
Прибор показывает 1,5 Вольта и это не напряжение, а электродвижущая сила (ЭДС).
Теперь подключим лампочки к аккумулятору.
Измерение напряжения на различных участках электрической цепи.
Мы заметили, что на одной лампочке напряжение (не ЭДС) составляет 1 вольт, а на другой – 0,3 вольта
Напряжение лампочек зависит от их мощности, мощность измеряется в ваттах.
Мощность = Напряжение * Ток (P = U * I)
Чем больше мощность лампочки, тем больше на ней напряжение.
Если наша батарея 1,5 вольт = 1 вольт + 0,3 вольта = 1,3 вольта, куда делись 0,2 вольта? Батарея тоже имеет собственное внутреннее сопротивление, вот куда и пошли.
Закон Ома
Что ж, дорогие друзья, я думаю, мы не теряли времени зря. После изучения наших гидравлических моделей в моей голове начала формироваться головоломка, начало формироваться понимание.
Что ж, попробуем проверить это по закону Ома.
Я не говорил сегодня о сопротивлении, но думаю, вы понимаете. Сопротивление электрическому току оказывается материалом проводника. В нашей водопроводной системе ржавые трубы забиты ржавчиной и другие имеют сопротивление потоку воды.
Поэтому закон Ома во всей красе работает как для системы водоснабжения, так и для системы электроснабжения. Может стоит сходить в сантехнику, там много общего.
Чем выше поднят резервуар для воды, тем быстрее вода будет течь по трубам. Но если трубы грязные, скорость будет ниже. Чем выше водонепроницаемость, тем медленнее будет течь. В случае засора вода может полностью подняться.
Ну по электричеству. Величина тока прямо пропорциональна величине напряжения (разности потенциалов) и обратно пропорциональна сопротивлению.
Чем выше напряжение, тем выше ток, но чем выше сопротивление, тем ниже ток. Напряжение может быть очень высоким, но ток может не течь из-за разомкнутой цепи. А прерывание – это как будто вместо металлического проводника мы подключаем проводник воздуха, а воздух имеет только гигантское сопротивление. Здесь ток остановится.
От чего зависит напряжение
Электрическое сопротивление
Существует три основных фактора, влияющих на норматив напряжения электрических токов, среди которых:
- Материал, из которого выполнен проводник. Для решения определенных задач существуют различные типы проводов, чаще всего можно встретить медные или алюминиевые изделия различного сечения и наружной оболочки. Наружная обмотка таких проводов бывает также из множества материалов, защитных и декоративных, например, ПВХ пленка или резиновая защита. Такая обработка позволяет использовать проводку в любых условиях, в том числе для организации наружного освещения;
- Температуры использования проводника;
- Уровня сопротивления электрического тока на данном участке. Данная величина зависит от свойств проводимости кабеля или иного предмета, подключенного к сети, и способности к беспрепятственному пропуску атомов через себя. Существуют материалы с нулевым сопротивлением или полностью диэлектрические, то есть не способные проводить электрический ток любого напряжения.
Ток и его напряжение напрямую зависят друг от друга, поэтому и их обозначения одинаковы. Напряжение тока измеряется в Вольтах и обозначается буквой В. Вольт выражается в разности положительного и отрицательного потенциалов на двух удаленных от друг друга точках поля, силы которого совершают усилия, равные одному Дж, при доставке заряда от одного отрезка к конечному. Номинал единицы заряда равен одному Кл, таким образом, обозначение 220 Вольт включает в себя понятие, что данная сеть способна потратить энергию в 220 Дж для транспортировки зарядов от входной точки до потребителя, это и называется электрическим напряжением в сети.
Какова опасность однофазного прикосновения в сети с заземленной нейтралью?
Рис. 2. Схема прикосновения человека к одной фазе трехфазной сети с заземленной нейтралью
В сети с заземленной нейтралью (рис. 2) цепь тока, проходящего через тело человека, включает в себя сопротивления тела человека, его обуви, пола (или основания), на котором стоит человек, а также сопротивление заземления нейтрали источника тока. С учетом указанных сопротивлений ток, проходящий через тело человека, определяется из следующего выражения:
где
- Uф — фазное напряжение сети, В;
- Rчел — сопротивление тела человека, Ом;
- Rоб — сопротивление обуви человека, Ом;
- Rп — сопротивление пола (основания), на котором человек стоит, Ом;
- Ro — сопротивление заземления нейтрали источника тока, Ом.
При наиболее неблагоприятных условиях (человек, прикоснувшийся к фазе, имеет на ногах токопроводящую обувь — сырую или подбитую металлическими гвоздями, стоит на сырой земле или на проводящем основании — металлическом полу, на заземленной металлоконструкции), т. е. когда Rоб = 0 и Rп = 0, уравнение принимает вид:
Поскольку сопротивление нейтрали Ro обычно во много раз меньше сопротивления тела человека, то им можно пренебречь. Тогда
Однако при этих условиях и однофазное прикосновение, несмотря на меньший ток, весьма опасно. Так, в сети с фазным напряжением Uф = 220 В при Rчел = 1000 Ом ток, проходя через тело человека, будет иметь значение:
Такой ток смертельно опасен для человека.
Если человек имеет на ногах непроводящую обувь (например, резиновые галоши) и стоит на изолирующем основании (например, на деревянном полу), то
где
- 45 000 — сопротивление обуви человека, Ом;
- 100 000 — сопротивление пола, Ом.
Ток такой силы не опасен для человека.
Из приведенных данных видно, что для безопасности работающих в электроустановках большое значение имеют изолирующие полы и непроводящая ток обувь.
Как соединить несколько источников электрической энергии
Электрическая энергия, вырабатываемая источниками электрической энергии — самый распространенный вид энергии в наше время. Процессы, связанные с данным видом электрической энергии, включают в себя под процессы, такие как — выработка (генерация), передача и потребление. Из этого можно выделить три группы устройств, которые принимают участие в этом процессе — источники электрической энергии, передаточные устройства и потребители.
Давайте подробно рассмотрим первую группы.
Источники электрической энергии.
Из самого названия можно догадаться, какую роль играют в электроэнергетике эти устройства, но все же я объясню. Источник электрической энергии — устройство, механизм от которого потребители получают электрическую энергию по средству передаточных устройств.
Суть явления
Любое вещество состоит из атомов. Они имеют ядра с положительным зарядом, а вокруг них вращаются отрицательно заряженные электроны. Под воздействием электрополя эти частицы начинают двигаться. Чем больше зарядов было перемещено, тем большую работу выполняет электрическое поле.
На этот параметр влияют две величины:
- сила тока;
- напряжение.
Физический смысл последней величины заключается в том, что работа электротока (А) на любом участке цепи соотносится с зарядом (q), проходящим по этому участку. В результате выполнения работы заряд со знаком «плюс» перемещается из точки с меньшим потенциалом в точку с большим. Говоря проще, напряжение равно отношению работы по перемещению заряда к его показателю и обозначается литерой «U». Таким образом, формула для определения разности потенциалов выглядит следующим образом — U = A / q.
Напряжение определяется разностью потенциалов либо электродвижущей силой. При этом работа является энергией и измеряется в джоулях (Дж). Для определения электрозаряда в международной системе единиц используется кулон (Кл).
В приведенном примере роль силы тока выполняет объем жидкости, а ее давление соответствует напряжению. При движении воды она свободно в большом количестве перемещается в шланге, создавая при этом определенное давление. Если конец шланга сжать, то при одновременном увеличении давления жидкости уменьшится ее объем. При этом струя будет перемещаться на большее расстояние.
С электричеством ситуация аналогична. Показатель силы тока зависит от объема (количества) электронов, двигающихся по проводнику. Разность потенциалов можно считать силой, с которой проталкиваются электроны. Из этого следует, что при одинаковом показателе заряда источника тока для проведения большего тока необходимо увеличить поперечное сечение проводника.
Кроме этого, напряжение зависит от следующих факторов:
- материала провода;
- сопротивления;
- температуры.
Измерительные приборы
Чтобы измерить силу, используется стрелочный или аналоговый, цифровой или электронный вольтметр. Благодаря этим приборам можно измерять и контролировать характеристики сигналов. Также сделать измерения можно осциллографами. Они работают благодаря тому, что энергия отклоняется электронным лучом и поступает на прибор, выдающий показатель переменной величины.
Вольтметр как основной прибор измерения
Напряжение это физическая величина, показывающая размер тока в цепи и оборудовании в вольтах. Ток бывает постоянным и переменным. Отличие в том, что первое понятие обозначает, что ток постоянно меняет свою полярность и протекает в сети переменно. Во втором же случае ток проходит по электроцепи без перерывов. Измеряется вольтметром.
Источник
Что такое ЭДС
Что такое ЭДС, думаете Вы? Сейчас расскажу!
Электродвижущая сила (ЭДС) тоже измеряется в Вольтах, как и
напряжение.
Давайте возьмём прибор, который измеряет вольты (вольтметр),
батарейку и произведём замер.
Прибор показывает 1,5 Вольта и это не напряжение, а электродвижущая сила (ЭДС).
А теперь подключим к батарейке лампочки.
Измерение напряжения на различных участках электрической цепи.
Заметили, что на одной лампочке напряжение (не ЭДС)
составляет 1 Вольт, а на другой 0,3 вольта
Напряжение на лампочках зависит от их мощности.Мощность измеряется
в Ваттах.
Мощность= Напряжение
* ток (P=U*I)
Чем больше мощность лампочки, тем больше будет на ней
напряжение.
Если батарейка у нас 1,5 вольта= 1 Вольт +0,3 Вольта= 1,3
Вольта, куда делись 0,2 Вольта? У батарейки есть тоже своё внутреннее сопротивление,
вот туда они и ушли.
Измерение мультиметром
Перед тем как мультиметром проверить напряжение в сети 220В, желательно понять устройство и маркировку прибора. Лучше использовать цифровой механизм. Он корректно отображает информацию, лоялен к неправильному подсоединению щупов. Дополнительно цифровые измерительные приборы неприхотливы к эксплуатации.
Главные составляющие мультиметра:
- ЖК экран для отображения показателей.
- Колесо, используемое для установки режимов (параметров) работы прибора.
- Щупы (2 шт.) — красный и черный. Непосредственно с их помощью проводят измерения.
- V= — определение напряжения постоянного тока;
- V
— напряжение переменного тока;
Ω — позволяет узнавать сопротивление; A= — определение постоянного тока; -hFE — проверка работоспособности транзистора; o))) — быстрая прозвонка электрической цепи; OFF/ON — выключение/включение.
Советуем изучить Закон Ома для переменного тока
Для каждого из параметров предусмотрены номинальные диапазоны измерений. Они указаны на панели мультиметра.
» токов могут заменяться аббревиатурами DC или AC. К примеру, чтобы выставить колесо регулировки на параметр измерения напряжения переменного тока, нужно повернуть его к аббревиатуре ACV или VАС.
Подготовительный этап
Дополнительно, перед тем как померить напряжение мультиметром в розетке, стоит выяснить назначение всех его разъемов на корпусе.
- 10ADC. Предназначен только для определения параметров силы постоянного тока. Максимальный разрешенный показатель – до 10 А. В этот разъем всегда вставляют только красный щуп.
- COM. Разъем является общим. К нему всегда подсоединяют для замеров только черный щуп.
- VΩmA. Разъем, который предназначен для выполнения всех основных измерений, таких как сила тока (до 10 А), напряжение или сопротивление.
Чаще используют разъем VΩmA.
Подключение мультиметра и проведение измерений
Для выполнения работ нужно правильно подключить щупы. Красный вставляют в разъем VΩmA, а черный — в СОМ. Далее нужно перевести колесо управления на нужный режим работы прибора. Для определения напряжения его выставляют на аббревиатуру ACV или V . При этом положение колеса нужно задать так, чтобы оно находилось на отметке выше предполагаемого напряжения сети. Для бытовой точки питания характерен показатель 220 В. Значит нужно задать ближайшее большее по величине значение. Для большинства мультиметров это будет 750 В.
Что такое напряжение шага?
Под напряжением шага понимается напряжение между двумя точками цепи тока, находящихся одна от другой на расстоянии шага, на которых одновременно стоит человек. Величина шага обычно принимается равной 0,8 м.
Для некоторых животных (лошади, коровы) величина напряжения шага больше, чем для людей, и путь тока захватывает грудную клетку. По этим причинам они более подвержены поражениям шаговым напряжением.
Шаговое напряжение возникает вокруг места перехода тока от поврежденной электроустановки в землю. Наибольшая величина будет около места перехода, а наименьшая — на расстоянии более 20 м, т. е. за пределами, ограничивающими поле растекания тока в грунте.
На расстоянии 1 м от заземлителя падение напряжения составляет 68% полного напряжения, на расстоянии 10 м — 92%, на расстоянии 20 м потенциалы точек настолько малы, что практически могут быть равны нулю.
Такие точки поверхности почвы считаются находящимися вне зоны растекания тока и называются «землей».
Опасность напряжения шага увеличивается, если человек, подвергшийся его воздействию, падает. И тогда напряженйе шага возрастает, так как путь тока проходит уже не через ноги, а через все тело.
Случаи поражения людей из-за воздействия напряжения шага относительно редки. Они могут произойти, например, вблизи упавшего на землю провода (в такие моменты до отключения линии нельзя допускать людей и животных на близкое расстояние к месту падения провода). Наиболее опасны напряжения шага при ударе молнии.
Оказавшись в зоне шагового напряжения, выходить из нее следует небольшими шагами в сторону, противоположную месту предполагаемого замыкания на землю, и в частности лежащего на земле провода.
Как избежать поражения электрическим током
Чтобы предотвратить поражение человека электричеством, необходимо не допустить возможность телесного контакта с деталями и проводниками под напряжением. Поэтому все работы выполняться с применением необходимых защитных средств. К числу основных средств индивидуальной защиты этого типа относятся диэлектрические перчатки и боты, диэлектрические коврики и подставки и т.д.
При работе обязательно применяется изолированный инструмент. Персонал в обязательном порядке проходит инструктаж, работники должны знать, как избежать поражения. Перед выполнением работ обязательно обесточить соответствующий участок сети. При этом на рубильнике или выключателе должна быть выставлена информационная табличка о запрете включения сети. Не допускается выполнение любых манипуляций с проводниками под напряжением.
Индикаторная отвертка HR28-C (12-250V)
Проверить наличие напряжения можно при помощи специальных индикаторных приборов. Самым простым и доступным среди таких приборов является индикаторная отвертка.
Если имеются сомнения, под напряжением ли проводник, работать с ним нельзя!
Какова опасность двухфазного прикосновения?
Под двухфазным прикосновением понимается одновременное прикосновение к двум фазам электроустановки, находящейся под напряжением (рис. 1).
Рис. 1. Схема двухфазного прикосновения человека к сети переменного тока
Двухфазное прикосновение более опасно. При двухфазном прикосновении ток, проходящий через тело человека по одному из самых опасных для организма путей (рука—рука), будет зависеть от прикладываемого к телу человека напряжения, равного линейному напряжению сети, а также от сопротивления тела человека:
где
- Uл — линейное напряжение, т. е. напряжение между фазными проводами сети;
- Rчел — сопротивление тела человека.
В сети с линейным напряжением Uл = 380 В при сопротивлении тела человека Rчел = 1000 Ом ток, проходящий через тело человека, будет равен:
Этот ток для человека смертельно опасен. При двухфазном прикосновении ток, проходящий через тело человека, практически не зависит от режима нейтрали сети. Следовательно, двухфазное прикосновение одинаково опасно как в сети с изолированной, так и с заземленной нейтралью (при условии равенства линейных напряжений этих сетей).
Случаи прикосновения человека к двум фазам происходят сравнительно редко.
Закон Ома для участка цепи
С камушками в трубе все понятно, но не только же от них зависит сила, с которой поток воды идет по трубе — от насоса, которым мы эту воду качаем, тоже зависит. Чем сильнее качаем, тем больше течение. В электрической цепи функцию насоса выполняет источник тока.
Например, источником может быть гальванический элемент (привычная батарейка). Батарейка работает на основе химических реакций внутри нее. В результате этих реакций выделяется энергия, которая потом передается электрической цепи.
У любого источника обязательно есть полюса — «плюс» и «минус». Полюса — это его крайние положения, по сути клеммы, к которым присоединяется электрическая цепь. Собственно, ток как раз течет от «+» к «−».
У нас уже есть две величины, от которых зависит электрический ток в цепи — напряжение и сопротивление. Кажется, пора объединять их в закон.
Сила тока в участке цепи прямо пропорциональна напряжению на его концах и обратно пропорциональна его сопротивлению.
Математически его можно описать вот так:
Закон Ома для участка цепи I = U/R I — сила тока U — напряжение R — сопротивление |
Напряжение измеряется в Вольтах и показывает разницу между двумя точками цепи: от этой разницы зависит, насколько сильно будет течь ток — чем больше разница, тем выше напряжение и ток будет течь сильнее.
Сила тока измеряется в амперах, а подробнее о ней вы можете прочитать в нашей статье.
Давайте решим несколько задач на закон Ома для участка цепи.
Задача раз
Найти силу тока в лампочке накаливания торшера, если его включили в сеть напряжением 220 В, а сопротивление нити накаливания равно 880 Ом.
Решение:
Возьмем закон Ома для участка цепи:
I = U/R
Подставим значения:
I = 220/880 = 0,25 А
Ответ: сила тока, проходящего через лампочку, равна 0,25 А
Давайте усложним задачу. И найдем силу тока, зная все параметры для вычисления сопротивления и напряжение.
Задача два
Найти силу тока в лампочке накаливания, если торшер включили в сеть напряжением 220 В, а длина нити накаливания равна 0,5 м, площадь поперечного сечения 0,01 мм2, а удельное сопротивление нити равно 1,05 Ом · мм2/м.
Решение:
Сначала найдем сопротивление проводника.
R = ρ · l/S
Площадь дана в мм2, а удельное сопротивления тоже содержит мм2 в размерности.
Это значит, что все величины уже даны в СИ и перевод не требуется:
R = 1,05 · 0,5/0,01 = 52,5 Ом
Теперь возьмем закон Ома для участка цепи:
I = U/R
Подставим значения:
I = 220/52,5 ≃ 4,2 А
Ответ: сила тока, проходящего через лампочку, приблизительно равна 4,2 А
А теперь совсем усложним! Определим материал, из которого изготовлена нить накаливания.
Задача три
Из какого материала изготовлена нить накаливания лампочки, если настольная лампа включена в сеть напряжением 220 В, длина нити равна 0,5 м, площадь ее поперечного сечения равна 0,01 мм2, а сила тока в цепи — 8,8 А
Решение:
Возьмем закон Ома для участка цепи и выразим из него сопротивление:
I = U/R
R = U/I
Подставим значения и найдем сопротивление нити:
R = 220/8,8 = 25 Ом
Теперь возьмем формулу сопротивления и выразим из нее удельное сопротивление материала:
R = ρ · l/S
ρ = RS/l
Подставим значения и получим:
ρ = 25 · 0,01/0,5 = 0,5 Ом · мм2/м
Обратимся к таблице удельных сопротивлений материалов, чтобы выяснить, из какого материала сделана эта нить накаливания.
Ответ: нить накаливания сделана из константана.
Параметры электрических приборов
Каждую современную квартиру нужно оснащать электрическими приборами. Для их подключения к сети необходимо составить принципиальную схему, где согласованно друг с другом распределятся нагрузки, подключенные к отдельным линиям. Нужно встраивать автоматический выключатель на основании ПУЭ для недопущения аварийных случаев.
Вначале уточняются параметры электропроводки. Затем проверяются по схеме группы для подключения к сети бытовых электроприборов.
Стандартные характеристики электрической мощности потребления (Вт):
- стационарный компьютер – 170-1 250;
- жидкокристаллический телевизор – 120 – 265;
- ноутбук – 40-280;
- кондиционер – 1 200 – 2 500;
- утюг – 450-1850.
Для защиты сети необходим автомат, его выбираем с учетом всех существенных факторов.
Автоматический выключатель для защиты электрической сетиИсточник vmasshtabe.ru
Важно уделить внимание нагрузкам, имеющим повышенные параметры реактивной энергии.
Кулон и электрический заряд
Одна из основных единиц электрических измерений, которую часто преподают в начале курсов электроники, но нечасто используют впоследствии, – это кулон – единица измерения электрического заряда, пропорциональная количеству электронов в несбалансированном состоянии. Один кулон заряда соответствует 6 250 000 000 000 000 000 электронов. Символом количества электрического заряда является заглавная буква «Q», а единица измерения кулонов обозначается «Кл». Единица измерения тока, ампер, равна 1 кулону заряда, проходящему через заданную точку в цепи за 1 секунду. В этом смысле, ток – это скорость движения электрического заряда через проводник.
Как указывалось ранее, напряжение – это мера потенциальной энергии на единицу заряда, доступная для стимулирования протекания тока из одной точки в другую. Прежде чем мы сможем точно определить, что такое «вольт», мы должны понять, как измерить эту величину, которую мы называем «потенциальной энергией». Общей метрической единицей измерения энергии любого вида является джоуль, равный количеству работы, совершаемой силой в 1 ньютон при движении на 1 метр (в том же направлении). В этих научных терминах 1 вольт равен 1 джоулю электрической потенциальной энергии на (деленному на) 1 кулон заряда. Таким образом, 9-вольтовая батарея выделяет 9 джоулей энергии на каждый кулон заряда, проходящего через цепь.
Эти единицы и символы электрических величин станут очень важны, когда мы начнем исследовать отношения между ними в цепях.