Теоретические основы электротехники

Электроника на практике

ПЭ – это раздел электроники, на практике показывающий основные закономерности электричества. Именно в практической части изучается каждый элемент цепи отдельно и применяется на деле в совокупности с другими. С этим названием вышла и книга, в которой можно найти много интересных статей по электротехнике, сформулированных на общедоступном языке.

Вам это будет интересно Особенности напряжения прикосновения

Материал включает в себя фотографии и опыты, к которым даны полные инструкции. Прочитав его, можно спокойно разбираться во всех электронных и радиотехнических терминах, овладеть пайкой и получить навыки дл чтения простых схем.

Важно! Прошло второе переиздание книги, в котором были отредактированы небольшие ошибки и опечатки, учтены пожелания читателей. Второе издание стало стоящим и полезным учебником для начинающих радиолюбителей

Как проверить резистор мультиметром, не выпаивая на плате

Без демонтажа эти детали можно проверять при сравнительно небольших номинальных значениях электрического сопротивления (80-120 Ом). Предполагается, что в этом диапазоне влиянием других элементов схемы можно пренебречь. В действительности, следует уточнять возможность измерений без существенных искажений.

Если шунтирующие цепи не позволяют обеспечить необходимую точность, придется выпаять хотя бы одну ножку. Альтернативное решение – разрезают дорожку печатной платы. Впоследствии устраняют соответствующие повреждения.

В публикации показано, как прозвонить резистор с применением разных методик. Оптимальный вариант выбирают с учетом:

  • уровня повреждений;
  • особенностей мультиметров;
  • условий работы.

В любом случае следует применить меры, предотвращающие искажение измеряемых параметров. Аккуратное обращение с паяльником и вспомогательными инструментами поможет сохранить в целостности исправные детали.

Энергия и мощность в электротехнике

Электрика для начинающих даёт разъяснения терминов энергии и мощности. Эти характеристики напрямую связаны с законом Ома. Энергия может перетекать из одной в другую форму. То есть она может быть ядерной, механической, тепловой и электрической.

В динамиках звуковых устройств потенциал электрического тока преобразовывается в энергию звуковых волн. В электродвигателях токовый энергопоток превращается в механическую энергию, которая заставляет вращаться ротор мотора.

Любые электрические устройства потребляют нужное количество электроэнергии в течение определённого временного промежутка. Количество потреблённой энергии в единицу времени является мощностью потребителя электричества. Более подробное толкование мощности можно найти в главах учебного пособия, посвящённых электромеханике для начинающих.

Мощность определяют по формуле:

N = I x U.

Измеряется этот параметр в ваттах. Единица измерения мощности Ватт означает, что ток силой в один Ампер перемещается под напряжением 1 Вольт. При этом сопротивление проводника равно 1-му Ому. Такая трактовка характеристики тока наиболее понятна для начинающих постигать основы электричества.

Описание дисциплины «Теоретические основы электротехники»

В зачётках студентов, получающих технические специальности, можно увидеть загадочную аббревиатуру «ТОЭ». Это как раз и есть нужная нам наука.

Датой рождения электротехники можно считать период начала XIX века, когда был изобретён первый источник постоянного тока. Матерью «новорождённой» отрасли знаний стала физика

Последующие открытия в области электричества и магнетизма обогатили эту науку новыми фактами и понятиями, имевшими важное практическое значение

Свой современный вид, как самостоятельная отрасль, она приняла в конце XIX века, и с тех пор входит в учебную программу технических ВУЗов и активно взаимодействует с другими дисциплинами. Так, для успешного изучения электротехники необходимо иметь теоретический багаж знаний из школьного курса физики, химии и математики. В свою очередь, на ТОЭ базируются такие важные дисциплины, как:

  • электроника и радиоэлектроника;
  • электромеханика;
  • энергетика, светотехника и др.

Центральным объектом внимания электротехники является, конечно, ток и его характеристики. Далее теория рассказывает об электромагнитных полях, их свойствах и практическом применении. В заключительной части дисциплины освещаются устройства, в которых трудятся энергичные электрончики. Осиливший эту науку многое поймёт в окружающем мире.

Каково значение электротехники в наше время? Без знания данной дисциплины нельзя обойтись электротехническим работникам:

  • электрику;
  • монтёру;
  • энергетику.

Вездесущность электричества делает его изучение необходимым и простому обывателю, чтобы быть грамотным человеком и уметь применять свои знания в повседневной жизни.

Понятия и свойства электрического тока

Начальные курсы электрика в первых главах дают определения понятию и свойствам электрического тока, объясняют природу и свойства электроэнергии, законы электричества и их основные формулы. Основываясь на великих открытиях, зарождалась и получила грандиозное развитие такая научная дисциплина, как электротехника. Сущность электричества заключена в направленном перемещении электронов (заряженных частиц). Они переносят электрический заряд в теле металлических проводов.

Важно! Для транзита электрической энергии используют провода, жилы которых сделаны из алюминия или меди. Это самые экономичные проводные металлы

Делать жилы проводов из других материалов дорого, поэтому невыгодно.

Ток бывает постоянного и переменного направления. Постоянное движение энергии всегда осуществляется в одном направлении. Переменный энергетический поток ритмично меняет свою полярность. Скорость, с которой меняется направление движения электронов, называют частотой. Её измеряют в герцах.

Активные элементы схемы замещения

Любой источник энергии можно представить в виде источника ЭДС или источника тока. Источник ЭДС — это источник, характеризующийся электродвижущей силой и внутренним сопротивлением.Идеальным называется источник ЭДС, внутреннее сопротивление которого равно нулю.

На рис. 1.3 изображен источник ЭДС, к зажимам которого подключено сопротивление R. Ri — внутреннее сопротивление источника ЭДС. Стрелка ЭДС направлена от точки низшего потенциала к точке высшего потенциала, стрелка напряжения на зажимах источника U12 направлена в противоположную сторону от точки с большим потенциалом к точке с меньшим потенциалом.

Рис. 1.3

Ток

(1.2)

(1.3)

У идеального источника ЭДС внутреннее сопротивление Ri = 0, U12 = E. Из формулы (1.3) видно, что напряжение на зажимах реального источника ЭДС уменьшается с увеличением тока. У идеального источника напряжение на зажимах не зависит от тока и равно электродвижущей силе. Возможен другой путь идеализации источника: представление его в виде источника тока. Источником тока называется источник энергии, характеризующийся практически постоянной величиной тока и низкой внутренней проводимостью.

Идеальным называется источник тока, внутренняя проводимость которого равна нулю, а сопротивление — бесконечности.

Поделим левую и правую части уравнения (1.2) на Ri и получим

,

где — ток источника тока;

— внутренняя проводимость.

У идеального источника тока gi = 0 и J = I.

Ток идеального источника не зависит от сопротивления внешней части цепи. Он остается постоянным независимо от сопротивления нагрузки. Условное изображение источника тока показано на рис. 1.4.

Любой реальный источник ЭДС можно преобразовать в источник тока и наоборот. Источник энергии, внутреннее сопротивление которого мало по сравнению с сопротивлением нагрузки, приближается по своим свойствам к идеальному источнику ЭДС.

Рис. 1.4

Если внутреннее сопротивление источника велико по сравнению с сопротивлением внешней цепи, он приближается по своим свойствам к идеальному источнику тока.

1.4.Основные определения, относящиеся к схемам

Различают разветвленные и неразветвленные схемы. На рис. 1.5 изображена неразветвленная схема. На рис. 1.6 показана разветвленная схема, содержащая два источника ЭДС и 5 сопротивлений. Сопротивления соединительных проводов принимают равными нулю.

Разветвленная схема — это сложная комбинация соединений пассивных и активных элементов. На рис. 1.6 показана разветвленная схема, содержащая два источника ЭДС и 5 сопротивлений. Сопротивления соединительных проводов принимают равными нулю.

Рис. 1.5

Ветвь

— это участок электрической цепи, по которому проходит один и тот же ток.

узел

— это место соединения трех и более ветвей электрической цепи.

Узел, в котором сходятся две ветви, называется устранимым, то есть топологически это не узел. Топологическим, настоящим или неустранимым узлом является такой, в котором соединены три и большее число ветвей. Узел в схеме обозначается точкой.

Последовательным называют такое соединение участков цепи, при котором через все участки проходит одинаковый ток. При параллельном соединении все участки цепи присоединяются к одной паре узлов, находятся под одним и тем же напряжением. Любой замкнутый путь, включающий в себя несколько ветвей, называется контуром.

Рис. 1.6

Схемы электрических соединений

На схеме приведена типовая двухконтурная проводка. На объект через автомат (A2), УЗО (A3) и электрический счетчик (A4) заведено сетевое напряжение осветительной сети (O1). Далее это напряжение разводится на два контура — осветительный и силовой. Оба контура имеют отдельные автоматы (A4 — осветительный контур, A5 — силовой) для их защиты от перегрузок и раздельного отключения при ремонтных работах. Автомат осветительного контура обычно выбирается на меньшую силу тока, чем автомат силового контура. К осветительному контуру подключены лампы (L1LN) и две розетки (S1, S2) для подключения маломощных нагрузок, например, компьютера или телевизора. Эти розетки используются при ремонтных работах на силовом контуре для подключения электроинструмента. Силовой контур разведен на силовые розетки (S3SN).

На схемах место соединения проводников обозначается точкой. Если проводники пересекают друг друга, но точки нет, то это означает, что проводники не соединены, они пересекаются без соединения.

Параллельное и последовательное соединения

Электрические цепи могут быть соединены параллельно и последовательно.

При последовательном соединении электрический ток, выходящий из одной цепи, попадает в другую. Таким образом, через все цепи, соединенные последовательно, протекает одинаковый ток.

При параллельном соединении электрический ток разветвляется на все цепи, соединенные параллельно. Таким образом, суммарный ток равен сумме токов в каждой цепи. Зато на цепи, соединенные параллельно, подается одинаковое напряжение.

На приведенной схеме входной автомат, УЗО, счетчик и вся остальная схема соединены последовательно. В результате автомат может ограничивать силу тока во всей цепи, а счетчик — измерять потребляемую энергию. Оба контура и нагрузки в них соединены параллельно, что позволяет подвести к каждой нагрузке сетевое напряжение, на которое она рассчитана, независимо от других нагрузок.

Здесь приведена принципиальная электрическая схема. Бывают еще монтажные схемы. На них указывается на плане объекта, где должна пройти проводка, где установить щит, где поставить розетки, выключатели и осветительные приборы. Там совсем другие обозначения. Я — не специалист в этих схемах. Информацию о них поищите в других источниках.

(читать дальше…) :: (в начало статьи)

 1   2   3   4   5   6   7   8 

:: Поиск

 

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости, чтобы быть в курсе.

Если что-то непонятно, обязательно спросите!Задать вопрос. Обсуждение статьи.

Задать вопрос электрику онлайн Здесь Вы можете спросить меня про электропроводку, электрику и другие тонкости электромонтажа. Читать дальше…

Еще статьи

Стреляющий, дистанционный шокер, электрошокер, электрошок. Своими рука…
Как сделать самому стреляющий электрошокер…

Почему водопровод бьет током? Что делать?…
Почему может бить током от водопровода, водопроводных смесителей? Причины электр…

Самодельная приставная лестница. Своими руками. Сборная, разборная, ск…
Как самому сделать надежную складную лестницу….

Встроенный стенной шкаф-купе своими руками. Инструкция. Схема. Чертеж….
Встроенный шкаф-купе — проектируем и ставим. Как сделать это самому, своими рука…

Скрипит кровать. Что делать, сделать? Избавиться устранить убрать скри…
Причины скрипа кровати. Что можно сделать, чтобы избавиться от противного звука?…

Зимний септик, особенности. Защита от грызунов. Конструкция, схема, че…
Особенности зимнего септика. Конструкция септика — пояснения….

Автоматика самодельной отопительной горелки. Схема. Своими руками. Отр…
Схема автоматики самодельной отопительной горелки на отработке….

Чистка дымохода. Чистим, прочищаем, очищаем телескопическим удилищем. …
Чищу дымоход с помощью телескопического удилища. Удачная технология очищения дым…

Понятия и свойства электрического тока

Начальные курсы электрика в первых главах дают определения понятию и свойствам электрического тока, объясняют природу и свойства электроэнергии, законы электричества и их основные формулы. Основываясь на великих открытиях, зарождалась и получила грандиозное развитие такая научная дисциплина, как электротехника. Сущность электричества заключена в направленном перемещении электронов (заряженных частиц). Они переносят электрический заряд в теле металлических проводов.

Важно! Для транзита электрической энергии используют провода, жилы которых сделаны из алюминия или меди. Это самые экономичные проводные металлы

Делать жилы проводов из других материалов дорого, поэтому невыгодно.

Ток бывает постоянного и переменного направления. Постоянное движение энергии всегда осуществляется в одном направлении. Переменный энергетический поток ритмично меняет свою полярность. Скорость, с которой меняется направление движения электронов, называют частотой. Её измеряют в герцах.

Что такое электричество

Электрический ток – это движение заряженных частиц (электронов), которое, как и всякое движение, можно направить на выполнение полезной работы. 2 основные единицы измерения электричества:

  • это напряжение (измеряется в вольтах и обозначается буквой В либо латинской V);
  • сила тока (измеряется в амперах и обозначается буквой А).

Для простоты сравним электричество с водой, протекающей по трубам. На примере воды под напряжением можно подразумевать силу, с которой вода выталкивается из источника (насоса), а под силой тока – количество воды, проходящей за единицу времени через участок трубы определенного диаметра (сечение провода). Как и в случае с водой в электротехнике сечение провода подбирается в зависимости от силы тока – неправильно выбранный провод просто сгорит при прохождение через него тока большей силы, нежели он рассчитан. Также следует отметить, что электроток может течь лишь в замкнутой цепи и бывает постоянным и переменным. Этот момент разберем подробнее.


Электрический ток – это движение заряженных частиц

Постоянный ток протекает в одном направлении от положительного полюса источника (+) к отрицательному (-), переменный же изменяет направление движения с заданной частотой. Частота – это еще одна единица измерения, применимая лишь к переменному току. По сути это количество изменений направления движения тока в секунду. Измеряется частота в герцах и обозначается буквами Гц, либо латинскими Hz. Так в бытовой электросети частота тока равна 50-ти герцам, то есть ток изменяет свое направление 50 раз в секунду. О переменном токе стоит немного рассказать дополнительно. Так в бытовой однофазной электросети 2 провода – один из них фаза (именно на него подается ток от электростанции), второй провод – нулевой. По сути 0 это пустой провод, по которому ток возвращается обратно к источнику питания (как мы помним электричество способно течь лишь в замкнутой цепи), но с точки зрения безопасности. полагаться на это не стоит. Так, например в замкнутой цепи опасное напряжение присутствует на обоих проводах

Вообще осторожность – главное правило при работе даже с казалось бы, низким и безопасным напряжением. Немного разобравшись с теорией, (к которой еще вернемся) перейдем к более практическим вещам, которые пригодятся при дальнейшей работе с электричеством

Предисловие автора

Относительно данной книги могу сказать, что она при беглом перелистывании может показаться читателю сухой и не очень занимательной, как другие мои книги. Однако в действительности это не так. Приборы, опыты и установки, о которых идет в ней речь, любопытны и возбуждают значительный интерес. Правда, они в большинстве случаев не очень просты для осуществления, но, во всяком случае, особой опытности и искусства от любителя не требуют.

Как и при составлении всех моих книг, я всюду, где это только можно, старался упростить постройку аппаратов и схему установок, лишь бы выяснить принцип их конструкции и действия.

Думаю, впрочем, что пытливый читатель сможет без особых затруднений справиться с теми требованиями, которые настоящая книжка предъявляет к его опытности в деле сооружения любительских приборов и приспособлений для использования электрической энергии в ее разнообразных приложениях в практике.

Умышленно избегая каких бы то ни было математических формул и численных расчетов, зачастую отталкивающих начинающего любителя от чтения книг по электротехнике, я все же считаю своим долгом указать читателю, что знание тех теоретических данных, на которых основано конструирование различных электротехнических приборов и аппаратов, станет необходимым ему в будущем, когда он от электротехники занимательной пожелает перейти к электротехнике серьезной.

Моя же цель – возбудить в нем интерес к такому переходу от развлечения к науке, от забавы к делу.

Буду удовлетворен, если ее достигну.

С чего начать обучение?

На сегодняшний день стать электриком с нуля можно обучившись в ВУЗе, техникуме, колледже, ПТУ или даже на специальных экстренных курсах. Нельзя сказать, что высшее учебное заведение – это фундамент, благодаря которому можно стать профессиональным электромонтажником. Довольно много специалистов вообще самоучки, которые окончили техникум, чтобы просто получить корочки и устроиться на предприятие.

Рассмотрим несколько наиболее популярных способов получить профессию электрик:

ВУЗ. Длительность обучения от 4 до 5,5 лет. Выпускники могут быть инженерами, т.к. проходят наиболее развернутый теоретический и практический курс. Обучение может быть бесплатным.
Техникум. При поступлении после 9 класса курс обучения составляет от 3 до 4 лет. После 11 класса останется обучиться от 1,5 до 3 лет. Квалификация, которую получают выпускники – техник. Есть возможность бесплатно выучиться.
Колледж, ПТУ – обучение от 1 до 3 лет. После окончания учебы можно стать слесарем-электриком по ремонту электрооборудования. Как и в двух предыдущих случаях, получить образования можно бесплатно.
Экстренные курсы – от 3 недель до 2 месяцев. Самый быстрый способ стать электриком с нуля. На сегодняшний день обучиться профессии можно даже в онлайн-режиме благодаря скайп-конференциям и индивидуальному обучению. Стоимость курсов колеблется от 10 до 17 тыс. рублей (цены на2017 год).
Самообучение. Подойдет лишь в том случае, если вы хотите стать электромонтажником в домашних условиях. Существует множество книг, платных курсов и даже сайтов, как наш Сам Электрик, где Вы можете узнать практически все для того, чтобы самостоятельно выполнять несложные работы по электромонтажу. На этом способе, позволяющем стать грамотным электромонтажником с нуля, мы остановимся подробнее.

Рекомендуем также просмотреть видео, на котором наглядно показывается, с чего начать, чтобы стать электромонтером в домашних условиях:

Первые шаги к обучению

Это интересно: Фазное и линейное напряжение в трехфазных цепях: о чем нужно знать

Энергия и мощность в электротехнике

Электрика для начинающих даёт разъяснения терминов энергии и мощности. Эти характеристики напрямую связаны с законом Ома. Энергия может перетекать из одной в другую форму. То есть она может быть ядерной, механической, тепловой и электрической.

В динамиках звуковых устройств потенциал электрического тока преобразовывается в энергию звуковых волн. В электродвигателях токовый энергопоток превращается в механическую энергию, которая заставляет вращаться ротор мотора.

Любые электрические устройства потребляют нужное количество электроэнергии в течение определённого временного промежутка. Количество потреблённой энергии в единицу времени является мощностью потребителя электричества. Более подробное толкование мощности можно найти в главах учебного пособия, посвящённых электромеханике для начинающих.

Мощность определяют по формуле:

N = I x U.

Измеряется этот параметр в ваттах. Единица измерения мощности Ватт означает, что ток силой в один Ампер перемещается под напряжением 1 Вольт. При этом сопротивление проводника равно 1-му Ому. Такая трактовка характеристики тока наиболее понятна для начинающих постигать основы электричества.

С чего начать изучение основ электротехники

Электротехника для начинающих доступна на многих информационных носителях. Современные средства массовой информации не испытывают дефицита в учебных пособиях по основам электричества. Самоучители по электрике приобретают в сети интернет или книжных магазинах. Уроки электрика новичок может получить в виде бесплатного видеокурса об основах электричества через интернет. Онлайн видео лекции в доступной форме обучают всех желающих основам электричества.

Обратите внимание! Книга, несмотря на доступные видеоресурсы в сети, до сих пор считается самым удобным источником информации. Пользуясь самоучителем по электрике с нуля, не нужно всё время включать ПК. Учебник всегда будет под рукой

Учебник всегда будет под рукой.

Самоучители служат незаменимыми помощниками для того, чтобы отремонтировать электропроводку, починить выключатель, розетку, установить датчик движения и заменить предохранители в бытовых электроприборах.

Электротехника и электромеханика

Электрическая механика – это раздел электротехники. Эта научная дисциплина изучает принципиальные схемы оборудования, двигателей и прочих приборов, использующих электрическую энергию.

Пройдя курс электромеханики для начинающих, новички могут самостоятельно научиться ремонтировать бытовые электрические устройства и приборы. Основные законы электромеханики дают возможность понять, как устроен электродвигатель, чем отличается трансформатор от стабилизатора, что такое генератор и многое другое.


Стенд для изучения основ электромеханики

Дополнительная информация. Несомненную пользу новичкам принесут учебные пособия и видео курсы по электротехнике и электромеханике. Если есть друзья или знакомые, разбирающиеся в этом деле, то это только поможет быстро освоить азы этих дисциплин.

Энергия и мощность в электротехнике

Электрика для начинающих даёт разъяснения терминов энергии и мощности. Эти характеристики напрямую связаны с законом Ома. Энергия может перетекать из одной в другую форму. То есть она может быть ядерной, механической, тепловой и электрической.

В динамиках звуковых устройств потенциал электрического тока преобразовывается в энергию звуковых волн. В электродвигателях токовый энергопоток превращается в механическую энергию, которая заставляет вращаться ротор мотора.

Любые электрические устройства потребляют нужное количество электроэнергии в течение определённого временного промежутка. Количество потреблённой энергии в единицу времени является мощностью потребителя электричества. Более подробное толкование мощности можно найти в главах учебного пособия, посвящённых электромеханике для начинающих.

Мощность определяют по формуле:

N = I x U.

Измеряется этот параметр в ваттах. Единица измерения мощности Ватт означает, что ток силой в один Ампер перемещается под напряжением 1 Вольт. При этом сопротивление проводника равно 1-му Ому. Такая трактовка характеристики тока наиболее понятна для начинающих постигать основы электричества.

Электроизоляционные материалы (диэлектрики)

Электроизоляционные материалы (диэлектрики) имеют очень малую удельную электрическую проводимость. Они бывают газообразные, жидкие и твердые. Особенно большим разнообразием отличаются твердые диэлектрики. К ним относятся резина, сухое дерево, керамические материалы, пластмассы, картон, пряжа и др. материалы. В качестве конструкционных материалов применяются текстолит и гетинакс. Текстолит это диэлектрический материал основой которого является ткань, пропитанная феноло-формальдегидной смолой. Гетинакс это бумага, пропитанная феноло-формальдегидной смолой.

Электроника для всех

Закон Ома

Закон Ома
Сила тока в цепи пропорциональна напряжению и обратно пропорциональная полному сопротивлению цепи. I = U/RU – величина напряжения в вольтах.R – сумма всех сопротивлений в омах.I – протекающий по цепи ток.

Закон Ома на практике

Для примера просчитаем простейшую цепь, состоящую из трех сопротивлений и одного источника. Схему я буду рисовать не так как принято в учебниках по ТОЭ, а ближе к реальной принципиальной схеме, где принимают точку нулевого потенциала – корпус, обычно равный минусу питания, а плюс считают точкой с потенциалом равным напряжению питания. Для начала считаем, что напряжение и сопротивления у нас известны, а значит нам нужно найти ток. Сложим все сопротивления (о правилах сложения сопротивлений читай на врезке), дабы получить общую нагрузку и поделим напряжение на получившийся результат – ток найден! А теперь посмотрим как распределяется напряжение на каждом из сопротивлений. Выворачиваем закон Ома наизнанку и начинаем вычислять. U=I*R

поскольку ток в цепи един для всех последовательных сопротивлений, то он будет постоянен, а вот сопротивления разные. Итогом стало то, чтоUисточника = U1 +U2 +U3 . Исходя из этого принципа можно, например, соединить последовательно 50 лампочек рассчитанных на 4.5 вольта и спокойно запитать от розетки в 220 вольт – ни одна лампочка не перегорит. А что будет если в эту связку, в серединку, всандалить одно здоровенное сопротивление, скажем на КилоОм, а два других взять поменьше – на один Ом? А из расчетов станет ясно, что почти все напряжение выпадет на этом большом сопротивлении.

Закон Кирхгоффа.

Закон Кирхгоффа на примере

Согласно этому закону сумма токов вошедших и вышедших из узела равна нулю, причем токи втекающие в узел принято обозначать с плюсом, а вытекающие с минусом. По аналогии с нашей канализацией – вода из одной мощной трубы разбегается по кучи мелких. Данное правило позволяет вычислять примерный потребляемый ток, что иногда бывает просто необходимо при расчете принципиальных схем.

Мощность и потери

Мощность которая расходуется в цепи выражается как произведение напряжения на ток.Р = U * I Потому чем больше ток или напряжение, тем больше мощность. Т.к. резистор (или провода) не выполняет какой либо полезной нагрузки, то мощность, выпадающая него это потери в чистом виде. В данном случае мощность можно через закон ома выразить так:P= R * I2 Как видишь, увеличение сопротивления вызывает увеличение мощности расходующееся на потери, а если возрастает ток, то потери увеличиваются в квадратичной зависимости. В резисторе вся моща уходит в нагрев. По этой же причине, кстати, аккумуляторы нагреваются при работе – у них тоже есть внутреннее сопротивление, на котором и происходит рассеяние части энергии. Вот для чего аудиофилы для своих сверхмощных звуковых систем берут толстенные медные провода с минимальным сопротивлением, чтобы снизить потери мощности, так как токи там бывают немалые.

Есть закон полного тока в цепи, правда на практике мне он никогда не пригождался, но знать его не помешает, поэтому утяни из сети какой либо учебник по ТОЭ (теоретические основы электротехники) лучше для средних учебных заведений, там все гораздо проще и понятней описано – без ухода в высшую математику.

Часть 2. Резистор. Конденсатор. Индуктивность

Набор Мастеркит

На третий день решили посмотреть, что же за набор из себя представляем Мастеркит. Это также достаточно большая коробка с оформлением в духе школьных учебников. Внутри оказалось брошюра, макетная плата, батарейка и… один пакетик с россыпью элементов.

Очень не порадовала колодка для подключения батарейки – после набора Киберфизики подключать провода оказалось очень неудобно – они то и дело норовили загнуться и не попасть внутрь макетки. В саму макетную плату, по ощущениям, элементы вставлялись лучше, но прозрачный пластик оказался не очень практичен в сравнении с белым – сложно разглядеть, куда подключен элемент. Также странным показалось подключение батарейки к макетной плате на схемах – плюсовой контакт подключаем к минусовой шине. Брату также пришлось объяснять, что обозначение шин «+» и «-» лишь для удобства.

Описываемые в брошюре схемы в основном идентичные, разве что сюда добавлен инфракрасный датчик, что добавило интереса.

В наборе мне понравилась брошюра с теоретической частью и языком изложения, но все достоинства перекрыли следующие недостатки:

— упаковка всех элементов в один пакетик — немного странные схемы подключения питания — плохая колодка для подключения батарейки к макетной плате

Электрика для чайников

Электроника окружает человека в виде различных устройств и приборов. Современная бытовая техника в большинстве своём управляется с помощью электронных схем. Курсы обучения основам электроники для начинающих нацелены на то, чтобы новичок мог отличать транзистор от резистора и понимать, как и для чего служит та или иная электронная схема.


Учебник по электронике для новичков

Учебные пособия и видеокурсы способствуют пониманию принципов построения электронных схем. Что такое печатная плата, как создать схему своими руками – на все эти вопросы отвечают основы электроники для новичков. Усвоив азы электроники, домашний «мастер» сможет определить вышедшую из строя радиодеталь в телевизоре, аудио устройстве и другой бытовой технике и заменить её. Кроме этого, новичок приобретёт опыт работы с паяльником.


Электронная схема усилителя звука

Видеокурсы, печатная продукция несут в себе массу информации по освоению основ электротехники, электромеханики и электроники. Приобрести знания в этих сферах можно, не выходя из дома. Просмотреть нужное видео, заказать учебники позволяет доступность сети интернета.

Как обеспечить питание систем

Начинающим рекомендуется питать устройства от различных батареек или аккумуляторов из-за низкого напряжения на клеммах и ограниченной допустимой нагрузке по току, а значит, безопасности и минимальному риску поражения

Главное — 
осторожность, чтобы не замкнуть провода. Короткое замыкание следует устранить как можно скорее, желательно разомкнув цепь

Иначе аккумулятор нагревается, и могут вытечь вредные вещества.

Другой вариант питания устройств — регулируемый магазинный источник питания, изготовленный в соответствии со стандартами безопасности. Использование различных дешевых, неопробованных изобретений может нести большую опасность. Поэтому для обучения лучше выбрать маленькую батарейку на 9 В.
 

1.1. Основные пояснения и термины

Электротехника

— это область науки и техники, изучающая электрические и магнитные явления и их использование в практических целях получения, преобразования, передачи и потребления электрической энергии.

Электроника

— это область науки и техники, изучающая электрические и магнитные явления и их использование в практических целях получения, преобразования, передачи и потребления информации.

Каждая наука имеет свою терминологию. Запомним термины, понятия электротехники и электроники.

Электрическая цепь

— это совокупность устройств, предназначенных для производства, передачи, преобразования и использования электрического тока.

Все электротехнические устройства по назначению, принципу действия и конструктивному оформлению можно разделить на три большие группы.

Источники энергии, т.е. устройства, вырабатывающие электрический ток (генераторы, термоэлементы, фотоэлементы, химические элементы).

Электродвижущая сила

— электрическая разность потенциалов, создаваемая источником электрической энергии (электрохимическим элементом, механическим генератором, термоэлементом, фотоэлементом и пр.).

Приемники, или нагрузка, т.е. устройства, потребляющие электрический ток (электродвигатели, электролампы, электрические механизмы и т.д.).

Проводники, а также различная коммутационная аппаратура (выключатели, реле, контакторы и т.д.).

Направленное движение электрических зарядов называют электрическим током. Электрический ток может возникать в замкнутой электрической цепи. Электрический ток, направление и величина которого неизменны, называют постоянным током и обозначают прописной буквой I

.

Электрический ток, величина и направление которого не остаются постоянными, называется переменным током. Значение переменного тока в рассматриваемый момент времени называют мгновенным и обозначают строчной буквой i

.

Для работы электрической цепи необходимо наличие источников энергии. В любом источнике за счет сторонних сил неэлектрического происхождения создается электродвижущая сила. На зажимах источника возникает разность потенциалов или напряжение, под воздействием которого во внешней, присоединенной к источнику части цепи, возникает электрический ток. Различают активные и пассивные цепи, участки и элементы цепей. Активными называют электрические цепи, содержащие источники энергии, пассивными — электрические цепи, не содержащие источников энергии.

Линейная электрическая цепь

— это такая цепь, в которой ни один параметр цепи не зависит от величины или направления тока, или напряжения.

Нелинейная электрическая цепь

— это такая электрическая цепь, которая содержит хотя бы один нелинейный элемент. Параметры нелинейных элементов зависят от величины или направления тока, или напряжения.

Электрическая схема

— это графическое изображение электрической цепи, включающее в себя условные обозначения устройств и показывающее соединение этих устройств. На рис. 1.1 изображена электрическая схема цепи, состоящей из источника энергии, электроламп 1 и 2, электродвигателя 3.

Рис. 1.1

Для облегчения анализа электрическую цепь заменяют схемой замещения.

Схема замещения

— это графическое изображение электрической цепи с помощью идеальных элементов, параметрами которых являются параметры замещаемых элементов.

На рисунке 1.2 показана схема замещения.

Рис. 1.2

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Электрика
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: