Сравнительная таблица
Сравнительный график переменного тока и постоянного тока
Переменный ток | Постоянный ток | |
Количество энергии, которое можно нести | Безопасно переносить на большие расстояния по городу и может обеспечить большую мощность. | Напряжение постоянного тока не может перемещаться очень далеко, пока оно не начнет терять энергию. |
Причина направления потока электронов | Вращающийся магнит вдоль провода. | Устойчивый магнетизм вдоль провода. |
частота | Частота переменного тока составляет 50 Гц или 60 Гц в зависимости от страны. | Частота постоянного тока равна нулю. |
направление | Он меняет свое направление, пока течет по кругу. | Он течет в одном направлении в цепи. |
ток | Это величина, изменяющаяся во времени | Это ток постоянной величины. |
Поток электронов | Электроны продолжают переключать направления — вперед и назад. | Электроны неуклонно движутся в одном направлении или «вперед». |
Получен из | Генератор переменного тока и сеть. | Ячейка или батарея. |
Пассивные параметры | Сопротивление. | Только сопротивление |
Фактор силы | Лежит между 0 и 1. | это всегда 1. |
Типы | Синусоидальный, Трапециевидный, Треугольный, Квадратный. | Чистый и пульсирующий. |
Переменный и постоянный ток. Горизонтальная ось — это время, а вертикальная ось представляет напряжение.
Постоянный ток
Международный символ этого напряжения DC — Direct Current (постоянный ток), а условное обозначение на электросхемах «—» или «=». Величина и полярность этого вида напряжения являются неизменными, а сила тока изменяется только при изменениях нагрузки. Этот вид электрического тока производится аккумуляторами, батарейками и элементами солнечных электростанций.
От сети постоянного тока работают двигатели трамваев, троллейбусов и другого электротранспорта. Эти электродвигатели имеют лучшие тяговые характеристики, чем двигатели переменного тока.
Информация! От постоянного напряжения работает бОльшая часть электронных схем, но они получают питание от сети переменного тока через встроенный или внешний блок питания с выпрямителем.
Переменный ток
Международное обозначение этого напряжения AC — Alternating Current (переменный ток), а условное обозначение на электросхемах «~» или «≈».
Величина и полярность переменного тока в сети всё время меняется. Частота этих изменений составляет 50Гц в Европе и некоторых других странах и 60Гц в США. Большинство бытовых и промышленных электроприборов изготавливаются для питания переменным напряжением.
Практически вся электроэнергия, используемая в быту и промышленности, является переменной. Для передачи на большие расстояния его повышают при помощи трансформаторов, а в конечной точке линии понижают до необходимой величины. Это позволяет уменьшить стоимость ЛЭП и потери. Для того, чтобы исключить колебания напряжения, для особоважных приборов устанавливаются стабилизаторы.
При увеличении напряжения и неизменной передаваемой мощности сила тока и сечение проводов пропорционально уменьшается. Если напряжение не повышать, то для подачи электроэнергии к потребителю необходимо использовать кабеля большого сечения, а передача на большие расстояния окажется невозможной. Вот почему в розетке переменный ток.
В домашней розетке два контакта — фазный и нулевой. В некоторых случаях к ним добавляется заземляющий. Это однофазное напряжение является частью трёхфазной системы. Она включает в себя три одинаковых сети. Напряжение в этих сетях сдвинуто по фазе на 120° друг относительно друга.
Вначале эта система была шестипроводной. В таком виде её изобрёл Никола Тесла. Позже М. О. Доливо-Добровольский усовершенствовал эту схему и предложил передавать трёхфазное напряжение по трём или чётырём проводам (L1, L2, L3, N). Он также показал преимущества трёхфазной системы электроснабжения перед схемами с другим числом фаз.
Приборы для измерения силы тока
Прибором для измерения токовой силы называется амперметр, в дополнение к теме, чем измеряют ток. Бывает стрелочным, цифровым и электронным. Активно применяется в электролаборатории, автомобилестроении, точной науке и строительстве. По принципу действия бывает электромагнитным, магнитоэлектрическим, термоэлектронным, ферродинамическим, электродинамическим и цифровым. Измеряет как переменный, так и постоянный электроток.
Работает благодаря взаимодействию магнитного поля с подвижной катушкой или сердечником, который находится в корпусе. Пользоваться всеми типами очень просто. Все что нужно от пользователя, это внимательно изучить инструкцию и руководство к эксплуатации. Как правило, для начала измерения необходимо с помощью щупов прикоснуться к проводнику и нажать соответствующую кнопку. После на экране будет выведено значение в амперах. Стоит указать, что измеряет токовую силу также вольтметр, мультиметр и измерительная отвертка.
Вам это будет интересно Все о токе и его частоте
Амперметр
Измерение напряжения в сети
Чтобы правильно выполнить измерение напряжения необходимо четко представлять принцип и объект исследования. Поэтому следует отметить, что напряжение представляет собой такую электрическую величину, которая показывает разность заряда между двумя электрическими точками. К примеру, если в одной точке заряд составит +35 В, а в другой +310 В, то разница между этими точками составит 310 – 35 = 275 В, это и будет напряжение. Соответственно измерение напряжения может производиться только относительно чего-то, поэтому используются сразу две точки.
Если говорить о падении напряжения на каком-либо объекте или участке цепи, то измерение напряжения проводиться относительно концов прибора или цепи, точек подключения и т.д
При этом важно учитывать, что цифровой вольтметр или мультиметр в режиме измерения считается бесконечным сопротивлением или разрывом в цепи
Падение напряжения возможно только при условии протекания тока, поэтому подключение вольтметров последовательно с измеряемым объектом недопустимо, так как через него перестанет протекать ток. Аналоговый или электронный вольтметр должен подключаться только параллельно по отношению к измеряемому сигналу.
С практической точки зрения следует заметить, что аналоговые модели измерительных приборов имеют входное сопротивление равное 10 – 20 кОм, а современные мультиметры могут похвастаться 1МОм. Так как через сопротивление на входе в измерительное устройство может протекать ток утечки, этот делитель напряжения будет обуславливать снижение точности измерений. Поэтому чем ближе сопротивление на входе к бесконечности, тем более точный прибор вы используете.
Важно отметить, что замеры производятся под напряжением, из-за чего присутствует угроза поражения электротоком
Поэтому важно соблюдать элементарные меры предосторожности. Далее рассмотрим порядок выполнения измерения для постоянного и переменного напряжения
Далее рассмотрим порядок выполнения измерения для постоянного и переменного напряжения.
Постоянного тока
Для цепи постоянного тока расмотрим порядок измерения напряжения при помощи цифрового мультиметра. Для этого:
- Переведите переключатель мультиметра в положение для постоянного напряжения. На панели обозначается латинской буквой V со значком « = », знаками «+ и – », также может обозначаться аббревиатурой DC.
- Выберете нужный предел измерения, который будет максимально приближен к предполагаемому номиналу, но выше измеряемого.
- Установите щупы в соответствующие разъемы – черный к выводу COM, красный к выводу V.
- Приложите щупы мультиметра сразу к двум точкам – красный к плюсу, черный к минусу. Если вы заранее не знаете положение потенциалов, и показание прибора имеет отрицательное значение, нужно просто поменять полярность подключения.
На дисплее вы увидите показания вольтметра, если значение слишком малое, переключите ручку на меньший предел измерений. Прикладывая щупы, создавайте хорошее усилие, чтобы избежать большого переходного сопротивления, иначе они внесут ощутимую погрешность измерений.
Переменного тока
В цепи переменного тока бытовой цепи важно учитывать ее опасность из-за номинала в 220/380 В. Поэтому при невозможности подключения мультиметра непосредственно в процессе эксплуатации, его присоединение должно выполняться при отключенном напряжении при помощи «крокодилов»
В остальном процесс измерения идентичен:
- Переключите ручку мультиметра в положение для измерения переменного напряжения. На панели оно обозначается как V со значком «
» или аббревиатурой AC.
- Установите ручкой деление на нужный предел по принципу ближайшего большего потенциала относительно измеряемого номинала.
- Выполните подключение щупов к соответствующим выводам: черный к выводу COM, красный к выводу V.
- Подключите измерительный прибор к нужному устройству, заметьте, что полярность щупов здесь значения не имеет.
В чем измеряется
Как обозначается напряжение в технической документации и на графических схемах? Единица измерения напряжения именуется вольт (В) по фамилии итальянского физика А. Вольта. Один вольт можно описать как потенциальную разницу двух точек поля, в котором с целью перемещения однокулонного заряда совершается работа в 1 джоуль.
Емкость конденсатора: единица измерения
Условное обозначение напряжения на схемах имеет вид заглавной латинской буквы V – символа единицы напряжения, заключенной в круг. Иногда вместо круга используется схематичное изображение измерительного прибора – вольтметра, идентифицируемое по литере V.
Важно! Если в некоторой сети имеется напряжение 220 В, это значит, что ее электрополе может затратить 220 джоулей с целью перемещения заряженных частиц через нагрузку и цепь. Для электрических приборов номинальное напряжение полагается обозначить в паспорте
Иногда оно указывается и в составе маркировки на передней панели корпуса (например, у счетчиков электроэнергии).
Вольт — единица измерения напряжения и эффект Джозефсона
В 1990 году была проведена стандартизация вольта в измерениях, при этом использовался нестационарный эффект Джозефсона. При пропускании через контакт Джозефсона тока больше критического, падение напряжения на контакте и сила тока через него помимо постоянной составляющей будет обладать переменной компонентой (говорят, что контакт излучает электромагнитные волны). Частота ($\nu $) этой составляющей определяется из фундаментального выражения:
где $h$ — постоянная Планка; $q_e$ — элементарный заряд. Данный эффект можно наблюдать и измерять при размещении контакта во внешнем электромагнитном поле высокой частоты. Если частота внешнего поля совпадает (или кратна) с частотой электромагнитного излучения, то появляется резонанс. Вольт — амперная характеристика для средних величин тока и напряжения является ступенчатой кривой. Ширина «ступенек» (ступеньки Шапиро) в направлении оси напряжений составляет величину $\frac{h\nu }{2q_e}$. Данные ступеньки позволяют измерять частоту внешнего поля вместо слабого электромагнитного излучения. Так, измерив напряжение, которое соответствует ступени и частоту излучения, находят отношение $\frac{q_e}{h}$. Так как радиочастоту измеряют с высокой точностью (подобная точность в измерении напряжения не достигнута), то точность измерения величины $\frac{q_e}{h}$ достаточно велика, в связи с этим эффект Джозефсона использовали для стандартизации вольта, как единицы напряжения.
Как возникает напряжение
Процесс возникновения напряжения в электрической цепи состоит из следующих этапов:
- Цепь, состоящую из проводников и потребителей, подключают к двум полюсам источника тока (батареи или генератора);
- На одном из полюсов источника (клемм батареи или контактных выводов генератора) содержится избыток электронов, на другом – недостаток. Тот полюс, на котором сконцентрировались носители заряда (электроны), принято называть положительным, в то время как второй – отрицательным.
- При подключении к цепи источника питания находящиеся на положительном полюсе и в проводнике свободные электроны под действием возникшего электро поля начнут притягиваться к отрицательно полюсу батареи, имеющему положительный заряд вследствие отсутствия электронов.
- Вследствие разности потенциалов между клеммами источника питания в проводниках и нагрузке возникнет упорядоченное движение электронов, и появится разность потенциалов определенной величины. При этом потенциал полюса с избытком электронов в случае с источниками постоянного тока постепенно уменьшается.
На заметку. Наиболее доходчиво и просто объясняет, что такое напряжение, определение, гласящее, что это разность между количеством свободных подвижных электронов на разных концах электрической цепи (клеммах источника питания).
Устройство трансформатора
В соответствии с ГОСТ 16110 −82, определение трансформатора выглядит следующим образом: трансформатор — это электромагнитное устройство статистического типа, которое оснащено двумя или более обмотками, обладающими индуктивной связью, и предназначенное для преобразования одной или нескольких систем переменного тока в одну или несколько других систем.
Это электромагнитное изделие обладает простой конструкцией, состоящей из следующих элементов: магнитопровод (магнитной системы), обмотки, обмоточные каркасы, изоляция (не во всех трансформаторах), система охлаждения. дополнительные элементы. На практике производители для изготовления трансформаторов используют одну из трёх базовых концепций:
- Стержневая. Обмотки наматываются на крайние стержни.
- Броневая. Боковые стенки остаются без обмоток.
- Тороидальная. Обладает формой кольца с равномерной намоткой обмоток по всей окружности.
Магнитная система
Магнитопроводы для трансформатора обладают определённой геометрической формой и изготавливаются из ряда материалов, к которым относится электротехническая сталь, пермаллой, феррит или иной материал, обладающий ферромагнитными свойствами. В зависимости от материала и конструкции магнитопровод может набираться из пластин, прессоваться, навиваться из тонкой ленты, собираться из двух, четырех и более «подков».
В качестве каркаса для размещения основных обмоток выступают стержни. Они могут обладать различным пространственным расположением, в зависимости от которого различают несколько видов систем.
- Плоская магнитная система с продольными осями стержней и ярм, расположенными в одной плоскости.
- Пространственная система, где продольные оси стержней располагаются в разных плоскостях.
- Симметричняа система, оснащённая идентичными стержнями, которые обладают одинаковым взаимным расположением по отношению к ярмам.
- Несимметричная система, состоящую из стержней, некоторые из которых могут отличаться по форме, конструкции и размерам, с различным взаимным расположением по отношению к ярмам.
Конструкция обмотки
Обмотка — это основной элемент трансформатора. Она представляет собой многовитковую конструкцию, изготовленную из одной или нескольких медных (реже алюминиевых) проволок различного диаметра. Как правило, в силовых трансформаторах используются проводники с квадратным сечением, которое позволяет более эффективно использовать имеющееся пространство, за счёт чего увеличивается коэффициент заполнения (К).
Для предотвращения возникновения короткого замыкания каждая обмотка изолируется. В качестве изолирующего материала может быть использована специальная бумага или эмалевый лак. Кстати, если для изготовления обмотки были использованы две отдельно изолированные и параллельно соединённые проволоки, то они могут быть оснащены общей бумажной изоляцией.
Топливный бак
Бак является одним из важнейших дополнительных элементов трансформатора. Он представляет собой ёмкость, предназначенную для хранения трансформаторного масла, а также обеспечения физической защиты активного компонента. Кроме того, корпус бака предназначен для монтажа вспомогательного оборудования и управляющего устройства.
Одним из внутренних элементов бака является сильноточный резонатор. Он подвержен быстрому и частому перегреву в моменты увеличения номинальной мощности и трансформаторных токов. Для снижения риска перегрева вокруг резонаторов устанавливают вставки из немагнитных материалов.
Внутреннее покрытие бака изготавливается из токопроводящих щитков, которые не пропускают магнитные потоки через стены ёмкости. Иногда встречается покрытие, которое изготавливается из материала, обладающего низким магнитным сопротивлением. Такой вариант покрытия поглощает внутренние потоки до подхода к стенкам бака.
Определение величины напряжения
Выполняя электромонтажные работы, специалист сталкивается с разными типами напряжения. Например, розетки в квартирах и частных домах являются источниками переменного напряжения. Оно может быть понижено или повышено трансформатором, выпрямлено специальным устройством. Измерение напряжения трения производят в лабораторных условиях электрохимическим методом. Мастеру нужно знать об особенностях измерения разных видов напряжения.
Постоянное напряжение
Его можно измерить, используя магнитоэлектрические устройства. Сейчас в продаже можно найти высокоточные приборы, оснащенные цифровым дисплеем. Проще всего непосредственно подключить устройство к участку, на котором нужно провести измерения. При этом необходимо соблюдать следующие правила:
- Предельное значение должно превышать предполагаемый максимум. В случае, когда измерительные работы выполняются без знания этого параметра, полагается установить максимальный предел и постепенно снижать его.
- Учитывать полярность подсоединения. В противном случае у стрелочного прибора указатель наклонится в противоположную сторону, у цифрового – на экране высветится отрицательное число.
Лабораторный вольтметр
Переменное напряжение
В этом случае в ход идут измерительные приборы разных видов, за исключением магнитоэлектрических. Работают с такими аппаратами только посредством подключения к выходу выпрямителя.
Что такое сила тока
Подобно автомобилям разных конструкций и оснащения, заряженные частицы перемещаются в прямом или обратном направлении, быстрее или медленнее. Их скорость и кон, только не на шоссе, а в проводнике.
Для количественной характеристики электрического тока в цепи вводится понятие силы тока. Силу тока обочначают буквой І.
Сила тока – физическая величина, равная отношению количества заряда к величине этого промежутка времени.
Это физическая величина, равная количеству заряда, проходящего за единицу времени через поперечное сечение проводящего материала-проводника. Его носители могут быть как отрицательно, так и положительно заряженные.
Сопротивление
Электрическое сопротивление – физическая величина, определяющая свойство проводника препятствовать (сопротивляться) прохождению тока. Единица измерения сопротивления – Ом (обозначается Ом
или греческой буквой омегаΩ ). В формулах и расчетах сопротивление обозначается буквойR . Сопротивлением в 1 Ом обладает проводник к полюсам которого приложено напряжение 1 В и протекает ток 1 А.
Проводники по-разному проводят ток. Их проводимость зависит, в первую очередь, от материала проводника, а также от сечения и длины. Чем больше сечение, тем выше проводимость, но, чем больше длина, тем проводимость ниже. Сопротивление – это обратное понятие проводимости.
На примере водопроводной модели сопротивление можно представить как диаметр трубы. Чем он меньше, тем хуже проводимость и выше сопротивление.
Сопротивление проводника проявляется, например, в нагреве проводника при протекании в нем тока. Причем, чем больше ток и меньше сечение проводника – тем сильнее нагрев.
Аналогия с гидравликой
Слово ток имеет происхождение от слова течение. Соответственно, можно провести аналогию течения жидкости с электрическим током. Протекание жидкости возможно из одного места в другое, только если возникает сила, заставляющая ее сделать это. В самом простом случае — это разница уровней жидкости. То есть потенциальная энергия, заставляющая жидкое вещество течь от более высокого уровня к более низкому.
Аналогом разности уровней жидкости будет разность потенциалов или напряжение. Аналогом силы тока будет напор потока воды, создаваемый этой разностью уровней. Примеры потоков жидкости:
- Водопад.
- Поток, создаваемый водонапорной башней.
- Реки, текущие туда, где есть наклон территории.
Везде вода течет туда, где уровень меньше, а электроток — от большего напряжения к меньшему.
Сила тока и напряжение: что это и в чем разница
Многие из нас, еще со школьной скамьи не могут понять того, какие аспекты, отличают силу тока от напряжения.
Конечно, учителя постоянно утверждали то, что разница между двумя этими понятиями, является просто огромной.
Тем не менее, только некоторые взрослые имеют возможность похвастаться наличием соответствующих знаний и если вы к числу таковых не принадлежите, то вам самое время обратить внимание на наш, сегодняшний обзор
Что такое сила тока и напряжение?
Для того, чтобы говорить о том, что собой представляет сила тока и какие нюансы с ней могут быть связаны, считаем необходимым обратить ваше внимание на то, чем она является сам по себе. Ток — это процесс, во время которого, под непосредственным воздействие электрического поля, начинает происходить движение неких, заряженных частиц
В качестве последних, может выступать целый перечень всевозможных элементов, в этом плане, все зависит от конкретной ситуации
Ток — это процесс, во время которого, под непосредственным воздействие электрического поля, начинает происходить движение неких, заряженных частиц. В качестве последних, может выступать целый перечень всевозможных элементов, в этом плане, все зависит от конкретной ситуации.
Так, к примеру, если речь идет об проводниках, то в этом случае, в качестве вышеупомянутых частиц, будут выступать электроны. Возможно некоторые из вас этого и не знали, но ток активно используется в современной медицине и в частности для того, что избавить человека от целого перечня всевозможных болезней, та же эпилепсия, например.
Там предусмотрены единичные положительные заряды, которые должны перемещаться из разных точек. Кроме этого, напряжением называют такую энергию, посредством которой и происходит вышеупомянутое перемещение. В школах, для понимания этого понятия, нередко приводят в пример течение воды, которое происходит между двумя банками.
В данной ситуации, в качестве тока, будет выступать сам поток воды, в то время, как напряжение сможет показывать разницу уровней в двух этих банках. По этому, течение будет наблюдаться до тех пор, пока оба уровни в банках не сравняются.
Что отличает силу тока от напряжения?
Осмелимся предположить, что в качестве основной разницы между двумя этими понятиями является их непосредственное определением:
- Под словами «сила тока» и «ток», в частности, представляют некое количество электричества, в то время, как напряжением принято считать меру потенциальной энергии. Простыми словами, два эти понятия достаточно сильно зависят друг от друга, сохраняя некоторые отличительные особенности, при всем этом. На их сопротивление влияет огромное количество самых разнообразных факторов. Важнейшим из них, является материал, из которого выполнен тот или иной проводник, внешние условия, а также температура.
- Некая разница предусмотрена также и в их получение. Так, если воздействие на электрические заряды, создает напряжение, то ток получается уже путем прикладывания напряжения между точками схемы. Кстати говоря, в качестве таковых приборов, могут выступать обыкновенные батареи или более продвинутые и удобные генераторы. По этой причине мы и можем говорить о том, что основные отличия двух этих понятий, сводятся к их определению, а также тому, что получаются они в результате совершенно разных процессов.
Путать не следовало бы ток также и вместе с энергопотреблением. Понятия эти являются совершенно разными и главным их отличием должна восприниматься именно мощность. Так, в том случае, если напряжение предназначено для того.
чтобы характеризовать потенциальную энергию, то в случае с током, энергия эта будет уже кинетической. В наших, современных реалиях, преимущественное большинство труб соответствует аналогиям из мира электричества. Речь идет об нагрузке, которая создается во время подключения лампочки или того же телевизора в сеть.
Во время этого, создается расход электричества, который в конечном итоге, приводит к появлению тока.
Конечно, в том случае, если в розетку вы не будете подключать никаких электроприборов, напряжение будет оставаться неизменным, в то самое время, как ток будет равняться нулю.
Ну а если не будет предусмотрено расхода, то какая вообще может идти речь о токе и какой-либо его силе? По этому, ток — это всего лишь некое количество электричества, в то время, как напряжением считается мера потенциальной энергии определенного источника электричества.
Интересное видео, где подробно объясняется разница между током и напряжением:
Источники электрической энергии
Мировое производство электроэнергии базируется на работе электростанций. Основной принцип работы станций заключается в том, что турбины установленных в них электрогенераторов вращаются с помощью других видов энергии. Они получили своё название соответственно типу используемой энергии:
- тепловые (ТЭС) – в качестве сырья используются органические виды топлива: уголь, газ, мазут и другие;
- гидроэлектростанции (ГЭС) – лопасти турбины вращает падающая вода, она же используется для охлаждения рабочих поверхностей генераторов;
- атомные станции (АЭС) – один из видов ТЭС, где для получения пара, вращающего турбину, используют тепло, выделяемое в результате ядерной реакции.
Размещение тех или иных видов электростанций зависит от распределения по регионам сырьевых ресурсов, географического расположения рек и выбора подходящих мест для возведения АЭС.
Внимание! Основную долю производства мировой электроэнергии до сих пор берут на себя ТЭС. Опасность при эксплуатации АЭС пока является сдерживающим фактором для полного перехода на этот мощный вид производства электричества
Неравномерная плотность проживания населения на планете не позволяет максимально приблизить такие источники энергии к местам потребления. Поэтому приходится передавать производимое электричество на дальние расстояния. Так как и потребление, и получение энергии происходит в реальном режиме, созданы энергосистемы, объединяющие электростанции между собой. Кроме того, сами системы организованы в более мощные энергосистемы. Это сделано для создания резерва рабочей мощности и возможности регулировать подачу электроэнергии к потребителям в бесперебойном режиме.
Разница в часовых поясах, сезонные колебания потребления – всё это нагружает одни станции и недогружает другие. Энергосистемы позволяют станциям подпитывать друг друга в случае перегрузок.
Что касается источников постоянного тока, то их можно разделить на два типа:
- химические – гальванические элементы, использующие реакции окисления, и электролитические, генерирующие энергию посредством электролиза;
- электромеханические – генераторы постоянного тока, превращающие энергию вращения в её электрический вид.
Гальванические элементы (батарейки) имеют конечный срок службы. Они конструктивно изготовлены так, что после окончания реакции окисления вырабатывание электричества прекращается. Электролитические элементы (аккумуляторы) имеют периодический режим работы. После разряда их можно заряжать, подавая на их полюса ток заряда, и использовать снова.
Источники электроэнергии
В чем она измеряется и как посчитать
Сила тока измеряется в амперах – обозначение 1 А. Ампер – одна из семи основных единиц.
1А = 1Кл/c, где Кл (или С) – это кулон, единица измерения количества электрического заряда.
Сила тока обозначается символом I (согласно первой букве французского Intensite´ du courant).
Величина ее определяется по формуле I=qn Vср S cos a, где:
- q – сумма зарядов;
- n – концентрация частиц;
- Vср – средняя скорость их упорядоченного движения;
- S – площадь проводника;
- a – угол между вектором направления движения и вектором нормали (перпендикуляра) к поверхности проводника.
Ампер – единица измерения силы электрического тока.
Вывод
Внутреннее сопротивление бывает не только у различных химических источников напряжения. Внутренним сопротивлением также обладают и различные измерительные приборы. Это в основном вольтметры и осциллографы.
Дело все в том, что если подключить нагрузку R, сопротивление у которой будет меньше или даже равно r, то у нас очень сильно просядет напряжение. Это можно увидеть, если замкнуть клеммы аккумулятора толстым медным проводом и замерять в это время напряжение на клеммах. Но я не рекомендую этого делать ни в коем случае! Поэтому, чем высокоомнее нагрузка (ну то есть чем выше сопротивление нагрузки R ), тем меньшее влияние оказывает эта нагрузка на источник электрической энергии.
Вольтметр и осциллограф при замере напряжения тоже чуть-чуть просаживают напряжение замеряемого источника напряжения, потому как являются нагрузкой с большим сопротивлением. Именно поэтому самый точный вольтметр и осциллограф имеют ну очень большое сопротивление между своими щупами.