Блок питания что это такое и какими они бывают

Ремонта блока питания — поиск схемы и замена стабилитрона

Далее ищем схему на этот блок питания. В Сети мы нашли схему Power Man 300 Ватт. Отличия в схеме лишь в порядковых номерах радиодеталей на плате. Если уметь анализировать печатную плату на соответствие схеме, это не будет большой проблемой.

Вот сама схема на Power Man 300W. Щелкните по ней для увеличения в натуральный размер.

Как мы видим, дежурное питание (дежурка) обозначается как +5VSB:

Прямо от него идет стабилитрон номиналом в 6,3 Вольта на землю. А как вы помните, стабилитрон — это тот же самый диод, но подключается в схемах наоборот. У стабилитрона используется обратная ветвь ВАХ. Если бы стабилитрон был живой, то у нас провод +5VSB не коротил бы на массу. Предполагаем, что стабилитрон сгорел и PN переход разрушен.

Что происходит при сгорании разных радиодеталей с физической точки зрения? Во-первых, изменяется их сопротивление. У резисторов оно становится бесконечным или, иначе говоря, уходит в обрыв. У конденсаторов оно иногда становится очень маленьким или, иначе говоря, уходит в короткое замыкание. С полупроводниками возможны оба этих варианта — как короткое замыкание, так и обрыв.

В нашем случае мы можем проверить это только одним способом, выпаяв одну или сразу обе ножки стабилитрона, как наиболее вероятного виновника короткого замыкания. Далее будем проверять пропало ли короткое замыкание между дежуркой и массой или нет. Почему так происходит?

Вспоминаем простые подсказки:

  1. При последовательном соединении работает правило больше большего. Иначе говоря, общее сопротивление цепи больше, чем сопротивление большего из резисторов.

При параллельном соединении работает обратное правило, меньше меньшего. Иначе говоря, итоговое сопротивление будет меньше, чем сопротивление резистора меньшего из номиналов.

Можно взять произвольные значения сопротивлений резисторов, самостоятельно посчитать и убедиться в этом. Попробуем логически поразмыслить, если у нас одно из сопротивлений параллельно подключенных радиодеталей будет равно нулю, какие показания мы увидим на экране мультиметра? Правильно, тоже равное нулю.

До тех пор, пока мы не устраним это короткое замыкание путем выпаивания одной из ножек детали, которую мы считаем проблемной, мы не сможем определить, в какой детали у нас короткое замыкание. Дело все в том, что при звуковой прозвонке все детали, параллельно соединенные с деталью в коротком замыкании, будут у нас звониться накоротко с общим проводом!

Пробуем выпаять стабилитрон. В ходе работы он просто развалился надвое.

Проверяем, устранилось ли у нас короткое замыкание по цепям дежурки и массы, либо нет. Действительно, короткое замыкание пропало. Запаиваем новый стабилитрон.

После первого включения блока питания новый стабилитрон начал пускать дым. Здесь надо бы вспомнить одно из главных правил ремонтника:

Перекусываем сгоревший стабилитрон бокорезами и снова включаем блок питания. Так и есть, дежурка завышена: 8,5 Вольт. Конечно в этот момент мы забеспокоились о ШИМ контроллере. Однако после скачивания даташита на микросхему было выявлено, что предельное напряжение питания для ШИМ контроллера равно 16 Вольт.

Наше предположение оказалось неверным, дело не в стабилитроне. Идём дальше.

Типовые применения и популярные модели лабораторных блоков питания

Теперь, когда мы разобрались с основными критериями выбора лабораторных источников питания, давайте рассмотрим типичные задачи применения этих устройств и подходящие для этих задач модели приборов.

Универсальный лабораторный блок питания для широкого круга задач

Для большинства типовых задач, возникающих при разработке или ремонте электронной аппаратуры отлично подходит серия ITECH IT6900A (до 150 В, до 25 А, до 600 Вт), которая создавалась в качестве основного лабораторного блока питания, способного решать 90% всех вопросов:

Если нужен универсальный блок питания, но за минимальные деньги, то выбирайте эконом серию ITECH IT6700. В ней две модели: на 100 Вт и на 180 Вт. Нет программного управления, зато есть автоматическое ограничение выходной мощности, что не часто встречается в таком ценовом диапазоне:

Высокое напряжение и большой ток

Если нужны постоянные напряжения более 100 В или токи более 10 А, смело выбирайте одну из 15-ти модели серии ITECH IT6700H. Приборы этой серии смогут обеспечить напряжение до 1 200 В и ток до 220 А при максимальной мощности до 3 кВт. Возможно как ручное, так и программное управление:

Если Вам необходимо, чтобы лабораторный блок питания выдавал в нагрузку мощность более 3 кВт, то у серии ITECH IT6000C нет альтернативы. Это новая, очень функциональная серия, выпущенная в конце 2018 года. Серия состоит из 69-ти моделей с напряжением до 2 250 В, током до 2 040 А и мощностью до 144 кВт:

Разработка и ремонт точной аналоговой аппаратуры, аудиосхем и чувствительных датчиков

Также можете посмотреть эти серии линейных блоков питания:

Генерация переменного напряжения и тока

Если Вам необходимо формировать синусоидальное напряжение или синусоидальный ток, то есть две серии источников с такой возможностью. Это серия ITECH IT7300 (1 фаза, мощность до 3 кВА):

И мощная серия ITECH IT7600 (1 фаза и 3 фазы, мощность до 54 кВА):

Как работает импульсный блок питания

Принцип работы импульсного блока питания в корне отличается от действия обычного, трансформаторного блока питания. Изначально напряжение в 220 В проходит через диодный мост, после чего прямой ток поступает в инвертор, т.е. преобразователь напряжения в токи высокой частоты. Это действие может выполняться либо посредством гальванического отделения питающей сети от входной цепи, либо без такового.

Если гальваническая развязка присутствует, то высокочастотный ток подвергается ей при помощи трансформатора. Причем, чем выше будет частота импульсов, тем эффективнее будет работать трансформатор.

Схемы включения каскадов силовых ключей

Само действие такого БП основывается на применении трех элементов, которые содержит схема импульсного блока. Они четко взаимодействуют между собой в процессе работы. Элементы эти следующие:

  • контроллер широтно-импульсного модулятора;
  • транзисторный блок, который может быть включены по одной из схем — мостовой, полумостовой или же по схеме со средней точкой;
  • импульсный трансформатор, у которого имеется первичная и вторичная обмотки, смонтированные на магнитопроводе.

При условии отсутствия гальванической развязки высокочастотного трансформатора тока в схеме нет, а сигнал подается сразу на фильтры НЧ. По сути, все схемы импульсных источников питания идентичны.

Далее попробуем более детально разобрать, как работает каждый из этих трех элементов.

Контроллер широтно-импульсной модуляции

Наверное, не нужно объяснять, что контроллер — это управляющее чем-либо устройство. Если разбирать именно ШИМ в импульсном блоке, то тут закладывается задача создания токов с одной частотой, но с различной длительностью включения. Логической единицей выступает, естественно, сам импульс, ну а нулем — его отсутствие.

Импульсы обусловлены одинаковым периодом колебания, т.е. амплитуда их величин равна. А вот работой электронной схемы позволяет управлять именно отношение продолжительности к самому периоду.

Для того чтобы проще было понять изложенное, можно обратиться к схематическому изображению.

Импульсы, создаваемые ШИМ

Принимая во внимание, что частота тока в сети 220 В равна 50 Гц, можно себе представить, насколько сложна работа, выполняемая контроллером и модулятором ШИМ. Обычно на его выходе образуется ток, с частотой порядка 30-60 кГц. Вообще, широтно-импульсная модуляция в наше время применяется во многих устройствах

И самый яркий тому пример — инверторные сварочные аппараты, где как раз при помощи ШИМ удалось снизить габариты и массу устройства в десятки раз по сравнению с обычными трансформаторными агрегатами

Вообще, широтно-импульсная модуляция в наше время применяется во многих устройствах. И самый яркий тому пример — инверторные сварочные аппараты, где как раз при помощи ШИМ удалось снизить габариты и массу устройства в десятки раз по сравнению с обычными трансформаторными агрегатами.

Транзисторный блок, или каскад силовых ключей

Мощные полевые или IGBT-транзисторы образуют каскад, который также может управляться и менее мощными элементами либо интегральными драйверами. Собраны эти транзисторы могут быть в одну из трех схем: мостовую, полумостовую либо со средней точкой.

Вот, собственно, и все, что можно сказать о силовых ключах импульсного блока питания.

Импульсник, или блок без гальваники

Импульсник, т.е. высокочастотный трансформатор, может быть собран на основе ферритового или альсиферового кольца, на котором и размещены первичная и вторичная обмотки. Они могут выдавать высокочастотный ток с импульсом до 100 кГц. Их работу дополняют различные фильтрующие элементы и диоды.

Если же гальваническая развязка в подобном БП отсутствует, то сигнал напрямую будет поступать на низкочастотный фильтр без какой-либо трансформации. Наглядно это показано на схематическом изображении.

Импульсный блок питания без гальванической развязки

Разновидности материалов

Представленное оборудование изготавливается из различных материалов. Создавая блоки питания представленного типа, потребуется рассмотреть все возможные варианты. Применяются следующие материалы:

  1. Электротехническая сталь.
  2. Пермаллой.
  3. Феррит.

Одним из лучших вариантов является альсифер. Однако его практически не найти в свободной продаже. Поэтому, желая создать оборудование самостоятельно, его не рассматривают в качестве возможного варианта.

Чаще всего для создания сердечника применяется электротехническая сталь марок 3421-3425, 3405-3408. Магнитно-мягкими характеристиками известен пермаллой. Это сплав, который состоит из никеля и железа. Его легируют в процессе обработки.

Для импульсов, интервал которых находится в пределах наносекунды, используется феррит. Этот материал имеет высокое удельное сопротивление.

Стабилизация вторичных напряжений.

Оптопара выполняет две функции: – передаёт сигнал обратной связи по напряжению от схемы сравнения напряжения вторичной цепи к схеме управления ШИМ в первичной цепи блока питания; – обеспечивает гальваническую развязку (как и трансформатор) вторичных цепей блока питания от первичных цепей (напряжения сети).

Схема стабилизации вторичного напряжения импульсного блока питания работает следующим образом:

Выпрямленное вторичное напряжение подаётся на делитель, средняя точка которого подключена к схеме сравнения.

  • Схема увеличивает ток светодиода оптопары при напряжении на входе более 2,5 В, приоткрывается транзистор оптопары и таким образом уменьшается продолжительность управляющих импульсов от схемы управления к силовому транзистору. Цепь этих событий приводит к снижению вторичного напряжения.
  • Соответственно схема сравнения уменьшает ток светодиода оптопары при снижении напряжения на входе ниже 2,5 В, что приводит к запиранию транзистора оптопары и увеличению длительности управляющих импульсов от схемы управления к силовому транзистору. Что в итоге приводит к увеличению вторичного напряжения.

В схемах с несколькими вторичными напряжениями схема стабилизации контролирует одно (реже два) вторичное напряжение и по нему (им) регулирует всю группу выходных напряжений. Высыхание ёмкости в той цепи, по которой производится стабилизация всей группы выходных напряжений приводит к увеличению напряжения во всех вторичных цепях. Высыхание ёмкости в любой другой вторичной цепи приводит к снижению напряжения только в этой цепи.

Схемы ИБП с описанием назначения элементов здесь . Схема и принцип действия зарядного устройства HUAWEI здесь

Принцип действия импульсных блоков питания
Ремонт блоков питания спутниковых тюнеров
Зарядное устройство из блока питания ноутбука.
  • Заряд аккумулятора постоянным током, напряжение на батарее растёт, до величины 14,4 В (2,4 В на банку)
  • Заряд аккумулятора постоянным напряжением 14,4 В (при этом ток заряда постепенно снижается и при 100% заряде близок к 0)
Зарядное устройство из блока питания и ARDUINO.

Устройство заряжает АКБ до 100%, а если был выбран режим тест – разряжает АКБ до уровня 0% и высчитывает величину ёмкости, которую батарея смогла отдать в нагрузку. После окончания теста АКБ опять заряжается до уровня 100%.

Ремонт компьтерного блока питания Q-DION
Huawei 050055E1W

Зарядное устройство для сотового телефона НUAWEI. Схема и описание принципа действия.

Стилус графического планшета TRUST TB-6300

YKF25225-2 представляет из себя генератор, собранный по схеме емкостной трёхточки. Активным элементом генератора является транзистор Q1.

2m 5mm digital USB цифровой эндоскоп с Aliexpress.com
USB 500 X 2 Мп цифровой микроскоп на Aliexpress.com

Установил с диска, который шёл с микроскопом программу. Она мне не понравилась.

Запустил программу видеопроигрывателя, выбрал источник видеосигнала ВЕБ-камера. Микроскоп соединился без проблем.

Главная >> Электроника >> Принцип действия импульсных блоков питания

Домашний мастер часто сталкивается с поломками сложной бытовой техники из-за отказов ее электрической схемы. Не всегда удается сразу выполнить такой ремонт. Часто требуются знания про импульсные блоки питания, принципы работы их составных частей.

Такие работники популярны, всегда востребованы, заслуживают уважения. Однако не все так сложно в этом вопросе, как кажется на первый взгляд.

Я выделил 7 правил, по которым работает любой ИБП, постарался объяснить их простыми словами для новичков. А что получилось — оценивайте сами.

Блоки питания — это электротехнические устройства, которые изменяют характеристики промышленной электроэнергии до уровня параметров, необходимых для работы конечных механизмов.

Они подразделяются на трансформаторные и импульсные изделия.

Силовой трансформатор понижает входное напряжение и одновременно обеспечивает гальваническую развязку между электрической энергией первичной и вторичной цепи.

Трансформаторные модули тратят значительную часть мощности на электромагнитные преобразования и нагрев, имеют повышенные габариты, вес.

Стандартный блок питания

Стандартные блоки питания являются самыми распространенными: их можно увидеть практически в любом магазине. Они используются как в стационарных компьютерах, так и в профильных игровых. Они нашли широкое применение даже в серверных системах. Минимальная мощность такого блока питания составляет 350 ватт, чего вполне достаточно для работы с офисным оборудованием. Однако его размеры больше подходят для корпусов формата ATX, то есть самого большого размера.

Кабели для стандартного блока питания создавались таким образом, чтобы их невозможно было случайно вырвать из блока. Именно поэтому, если разобрать такой блок питания, можно увидеть, что внутри они крепко спаяны. Минус такого блока в том, что некоторые из кабелей могут оказаться бесполезными и будут занимать место в корпусе, создавая путаницу из проводов.

Импульсный блок питания на TL494 своими руками — схема и подробная инструкция по монтажу

Схема импульсного блока питания на TL494

  • ШИМ контроллер (IC1) — TL494.
  • Операционный усилитель (IC2) — LM324.
  • 2 линейных регулятора (VR1, VR2) — L7805AB и LM7905.
  • 4 биполярных транзистора T1, T2 — C945 и T3, T4 — MJE13009.
  • 2 диодных моста — VDS2 (MB105) и VDS1 (GBU1506).
  • 5 выпрямительных диодов (D3–D5, D8, D9) — 1N4148.
  • 2 выпрямительных диода (D6, D7) — FR107.
  • 2 выпрямительных диода (D10, D11) — FR207.
  • 2 выпрямительных диода (D12, D13) — FR104.
  • Диод Шоттки (D15) — F20C20.
  • 5 дросселей — L1 (100 мкГн), L5 на желтом кольце (100 мкГн), L3, L4 (10 мкГн), L6 (8 мкГн).
  • Синфазный дроссель (L2) — 29 мГн.
  • 2 импульсных трансформатора — Tr1 (EE16) и Tr2 (EE28–EE33, ER35).
  • Трансформатор (Tr3) — BV EI 382 1189.
  • Предохранитель (F1) — 5А.
  • Терморезистор (NTC1) — 5.1 Ом.
  • Варистор (VDR1) — 250 В.
  • Резисторы — R1, R9, R12, R14 (2.2 кОм); R2, R4, R5, R15, R16, R21 (4.7 кОм); R3 (5.6 кОм); R6, R7 (510 кОм); R8 (1 Мом); R13 (1.5 кОм); R17, R24 (22 кОм); R18 (1 кОм);
  • R19, R20 (22 Ом); R22, R23 (1.8 кОм); R27, R28 (2.2 Ом); R29, R30 (470 кОм, 1–2 Вт); R31 (100 Ом, 1–2 Вт); R32, R33 (15 Ом); R34 (1 кОм, 1–2 Вт).
  • Переменные резисторы (R10, R11) — 10 кОм, можно использовать 3 или 4.
  • Резисторы (R25, R26) — 0.1 Ом; шунты, мощность зависит от выходной мощности БП.
  • Конденсаторы — C1, C8, C27, C28, C30, C31 (0.1 мкФ); C3 (1 нФ, пленочный); C4–C7 (0.01 мкФ); C10 (0.47 мкФ, 275 В, X); C12 (0.1 мкФ, 275 В, X); C13, C14, C19 (0.01 мкФ, 2 кВ, Y); C20 (1 мкФ, 250 В, пленочный); C21 (2.2 нФ, 1 кВ); C23, C24 (3.3 нФ).
  • Электролитические конденсаторы — C2, C9, C22, C25, C26, C34, C35 (47 мкФ); C11 (1 мкФ); C15, C16 (2.2 мкФ); C17, C18 (470 мкФ, 200 В); C29, C32, C33 (1000 мкФ, 35 В).
  • 2 светодиода — D1 (зеленый, 5 мм) и D2 (красный, 5 мм), либо просто диоды, если не нужна индикация.
  1. Корпус Z4A.
  2. Выключатель — 250 В, 6 А.
  3. Держатель для предохранителя.
  4. Розетка для подключения к сети 220 В.
  5. Вилка для подключения к сети 220 В.
  6. Разъём для выходного напряжения.
  7. Вентилятор 12 В.
  8. Вольтметр.
  9. Амперметр.

  1. Входное напряжение — 220 вольт переменного тока.
  2. Выходное напряжение — от 0 до 30 вольт постоянного тока.
  3. Выходной ток составляет более 15 А (фактически тестированное значение).
  4. Режим стабилизации напряжения.
  5. Режим стабилизации тока (защита от короткого замыкания).
  6. Индикация обоих режимов светодиодами.
  7. Малые габариты и вес при большой мощности.
  8. Регулировка ограничения тока и напряжения.

pechatnaya-plata-dlya-impulsnogo-bloka-pitaniya.rar Видео о тестировании данного блока питания:

Система рейтинга 80PLUS

В нашу эпоху угрозы климатической катастрофы и постоянного роста цен на электроэнергию можно сэкономить немного денег, если выбрать для своего игрового ПК блок питания с более высоким рейтингом энергоэффективности, а не более дешевого конкурента. Система рейтинга 80PLUS оценивает блоки питания именно по этому параметру. Конечно, в России это пока не так актуально в плане расходов, но в любом случае можно гордиться тем, что вы заботитесь об окружающей среде.

Несмотря на то, что эта сертификация добровольная, она показывает, насколько эффективно блок питания преобразует энергию из обычной электросети в низкое напряжение, необходимое внутренним комплектующим. В сущности, она сводится к потерям энергии во время преобразования, то есть выделению тепла.

Сертификация доступна лишь для блоков питания с потерями менее 20%, именно поэтому она и называется 80PLUS. Большинство блоков питания получает рейтинг в соответствии со шкалой знакомых драгоценных металлов. Сначала идет просто 80PLUS, затем бронзовый, серебряный, золотой, платиновый и титановый рейтинги. Для домашнего использования идеальной «золотой серединой» как раз является соответствующий рейтинг. Платиновые и титановые блоки обычно используются в компьютерах, которые долго работают под большой нагрузкой, например, серверах и рабочих станциях.

Система Cable-managment. Все о «проводах»

Это название объединяет способ подключения кабелей к блоку питания. Суть технологии в том, что к модулю подключаются только нужные кабели, идущие в комплекте поставки.

Например, блок обладает множеством кабелей, которые позволяют подключить, скажем, от 3 до 5 жестких дисков, до 2-3 видеокарт и т.п. Но ведь обычно в компьютере установлено максимум три винчестера и одна видеокарта. В этом случае получается, что все эти неиспользуемые кабели просто висят в системном блоке и только мешают охлаждению, т.к. затрудняют циркуляцию воздуха.

Технология модульного подключения кабелей позволяет, по мере необходимости, подключать только нужные в данный момент кабели, а ненужные оставлять «вне». У таких модулей несъемными являются только основные кабели, например, для питания системной платы, процессора и один кабель для дополнительного питания видеокарты.

БП должен не только обеспечивать необходимую мощность, но и правильно подводить напряжение ко всем компонентам, а для этого нужны соответствующие разъемы.

Например, разъемов Molex должно быть хотя бы не меньше шести штук (хотя можно расширять спец.разветвителем, но его надо покупать). В компьютере с двумя жесткими дисками и парой оптических приводов уже задействованы четыре таких разъема, а к Molex могут подключаться и другие устройства – например, корпусные вентиляторы и «древние» видеокарты с интерфейсом AGP. Длина кабелей питания должна быть достаточной для того, чтобы они могли дотянуться до всех необходимых разъемов. Еще одна немаловажная дополнительная опция, наличие которой крайне желательно, – оплетка у кабеля.

Она, во-первых, существенно упрощает монтаж компьютера и подключение новых устройств, а во-вторых, позволяет избежать зажимов и переломов кабелей вследствие их запутывания.

Виды БП их ключевые отличия плюсы и минусы

Разделить блоки питания на категории можно по разным критериям. Например, встроенные и переносные. Встроенные используются для питания только того устройства, частью которого они являются. Пример – БП телевизоров, компьютеров и т.п.

К переносным относятся источники питающих напряжений ноутбуков, мобильных телефонов, планшетов и т.п. От них можно осуществить энергоснабжение и других устройств – аналогичных или имеющие подходящие параметры по электропитанию.

Также можно разделить БП по первичному источнику (сетевые или автомобильные), по возможности регулирования, по наличию стабилизации и по другим критериям. Но все же главным различием, во многом определяющим потребительские качества и область применения источников, является их схемотехника.

Трансформаторные источники

Это самый традиционный источник вторичных напряжений, его схема отработана десятилетиями:

  • понижающий трансформатор;
  • выпрямитель;
  • сглаживающий фильтр;
  • стабилизатор — регулируемый или с фиксированным выходом (может отсутствовать);
  • выходной сглаживающий фильтр (если есть стабилизатор).

Структура трансформаторного источника питания.

Схема такого источника несложна, в нем содержится немного элементов, дорогостоящие компоненты отсутствуют. Проблема лишь в массогабаритных показателях. С ростом выходной мощности потребуется более мощный трансформатор, который намотан на сердечнике из трансформаторного железа. Также с увеличением выходного тока появляются проблемы отведения тепла от диодов выпрямителя, решаемая применением громоздких металлических радиаторов. Для сглаживания пульсаций на мощной нагрузке требуются оксидные конденсаторы большей емкости, а это также рост габаритов и веса. Если для поддержания заданного напряжения применяется линейный стабилизатор, то на его регулируемом элементе падает большая мощность.

Все это привело к тому, что в настоящее время область применения таких БП значительно сузилась. Они применяются лишь в качестве маломощных источников, а также там, где предъявляются особые требования к чистоте выходного напряжения. Реально увидеть такой источник сейчас можно, пожалуй, только в старых телевизорах и звукотехнике производства прошлых лет.

Бестрансформаторные

Существует техническое решение, позволяющее несколько снизить вес традиционного источника. Вместо трансформатора применяется балластный резистор или емкость. На нем падает излишек напряжения.

Структура трансформаторного источника питания.

У устроенного по подобному принципу БП есть существенные недостатки:

  • на балласте впустую рассеивается большая мощность;
  • выходное напряжение в отсутствие стабилизатора имеет ярко выраженную зависимость от нагрузки.

А самое главное – в такой схеме отсутствует гальваническая развязка от первичного источника, и все элементы блока находятся под полным сетевым напряжением относительно земли. Поэтому такие БП используются крайне редко, в качестве совсем уж дешевых зарядных устройств.

Импульсные

Самые распространенные источники питания для бытовой и промышленной техники – импульсные. Их выходная часть содержит все те же элементы, что и традиционные устройства:

  • трансформатор, преобразующий первичное напряжение во вторичное;
  • выпрямитель;
  • сглаживающий фильтр.

Принципиальное отличие от рассмотренной выше схемы состоит в том, что первичная обмотка трансформатора питается от напряжения относительно высокой частоты, а это ведет:

  • к уменьшению массы и габаритов трансформатора (его можно выполнить на ферритовом сердечнике);
  • снижению потребной емкости выходных конденсаторов.

Структура импульсного источника питания.

Чтобы из сетевого напряжения частотой 50 Гц получить импульсы высокой частоты, используется специальный преобразователь – инвертор. Сначала сетевое напряжение выпрямляется до постоянного, а потом ключами инвертора нарезается на импульсы. Силовые элементы (обычно, транзисторы) работают в ключевом режиме, поэтому на них рассеивается относительно небольшая мощность.

Инвертор по отношению к трансформатору является первичным источником, поэтому возникает еще одно преимущество – стабилизировать напряжение на выходе можно воздействием на инвертор с помощью обратной связи. Цепи стабилизации получаются компактными и почти не потребляющими мощности. Минусы таких источников – сложная схемотехника и большое количество высокочастотных составляющих в выходном напряжении. Первый недостаток при токах уже выше 2..3 А нивелируется легкостью и компактностью. Второй в большинстве случаев несущественен.

Более подробно читайте здесь: Описание работы и устройство импульсного блока питания

Разъемы и провода блока питания

Вот тут и начинается самый «хардкор», потому что у блоков питания бывают разные комплекты проводов, равно как и у комплектующих бывают различные разъемы. А что, если на БП не найдется нужного провода?.. В процессе выбора этот вопрос будет мучить любого неопытного пользователя. И вот тут у нас для вас есть две новости — хорошая и плохая. Начнем с плохой: чтобы грамотно выбрать блок питания, вам будет полезно узнать, какие бывают провода и разъемы.

Вот наглядный коллаж с фотографиями шести основных разъемов, которые используются в современных компьютерах. Далее по порядку рассмотрим назначение каждого из них:

  • Кабель питания диска SATA: используется с жесткими (HDD) и твердотельными (SSD) накопителями;
  • Кабель питания ЦПУ: обеспечивает питанием процессор, разъем для этого кабеля есть на каждой материнской плате, при этом он может быть и 8-штырьковым, но это встречается редко.
  • Кабель питания материнской платы: как уже упоминалось выше, предназначен для запитывания «материнки»;
  • Кабель питания флоппи-привода: раньше такой кабель использовался для подачи энергии на отсек для дискет;
  • Кабель питания PCI-Express: предназначен для обеспечением электроэнергией видеокарт и вообще любых карт расширения PCI-e, также стоит отметить, что чаще всего он структуру 6+2 pin или 4+4 pin, а еще их может понадобиться сразу две штуки, если у видеокарты высокое энергопотребление
  • Кабель питания периферии (он же Molex): когда-то он запитывал жесткие диске IDE-типа, а также CD/DVD-приводы, но сейчас используется разве что для подключения регулярно вращения вентиляторов или какой-нибудь выносной панели на корпусе.

Кстати, если кабель питания ЦПУ на БП 4-штырьковый, а разъем на материнской планете 6- или 8-штырьковый, то ничего страшного. Ставьте свой 4-pin, его вполне хватит, если вы не собираетесь практиковать экстремальный разгон.

А теперь, пока вы укладываете в голове все эти знания, поделимся с вами хорошей новостью: компоновка проводов на всех современных блоках питания примерно одинаковая. В этом плане разница между современными БП разве что в количестве проводов разного типа. Таким образом, вам не нужно маниакально записывать все разъемы на своих комплектующих, если только вы не собираете какой-то странный агрегат вместо игрового компьютера.

Кабели для дисков всегда идут с несколькими коннекторами, обычно по три на каждыйКабели для дисков всегда идут с несколькими коннекторами, обычно по три на каждый

Кстати, на рынке также можно найти модульные блоки питания со съемными кабелями. Они позволяют пользователю самостоятельно распределить мощность, что довольно удобно, если вы любите все тонко настраивать под себя. Но такие БП стоят дороже, да и к тому же придется вручную их присоединять, а также искать дополнительные провода, если у компьютера нестандартный набор комплектующих. Например, три видеокарты или очень много жестких дисков.

К тому же блоки питания со съемными кабелями, как правило, менее надежные. Из-за наличия дополнительного звена в виде разъема для подключения кабеля возникает избыточный нагрев. Это в общем-то не страшно, но и хорошего в этом ничего нет.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Электрика
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: